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ABSTRACT 

 

Several studies have been propose to improve the adhesion of diamond films on 

cemented carbide tool materials, however a systematic study in identifying the role of the 

factors that affect the final diamond adhesion and the resulting machining performance of 

the tool under real manufacturing conditions is still unexplored. CVD diamond film’s 

extraordinary qualities bring little benefit if the film fails to adhere sufficiently to the 

substrate. Inadequate adhesion undermines tool performance and longevity, causing 

unpredictable behavior under load and possibly leading to unexpected failure of the tool 

in the production line. This dissertation investigates the effects of different surface 

pretreatments on the adhesion and performance of CVD diamond coated WC-Co turning 

inserts for the dry machining of high silicon aluminum alloys.  

Different interfacial characteristics between the diamond coatings and the 

modified WC-Co substrate were obtained by the use of two different chemical etchings 

and a CrN/Cr interlayer, with the aim to produce an adherent diamond coating by 

increasing the interlocking effect of the diamond film, and halting the catalytic effect of 

the cobalt present on the cemented carbide tool. A systematic study is analyzed in terms 

of the initial cutting tool surface modifications, the deposition and characterization of 

microcrystalline diamond coatings deposited by HFCVD synthesis, the estimation of the 

resulting diamond adhesion by Rockwell indentations and Raman spectroscopy, and 
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finally, the evaluation of the dry machining performance of the diamond coated tools on 

A390 aluminum alloys. Scanning electron microscopy (SEM), metallographic analysis, 

and x-ray diffraction techniques were used to characterize the morphology, cobalt 

content, and nature of the substrate surfaces before and after each pretreatment; optical 

interferometry was utilized to characterize the surface roughness. After successfully 

diamond depositions, the films were characterized again using SEM, Raman 

spectroscopy, XRD, Electron Probe Microscopy Analysis (EPMA), and optical 

interferometry.  

The experiments show that chemical etching methods exceed the effect of the 

CrN/Cr interlayer in increasing the diamond coating adhesion under dry cutting 

operations. This dissertation provided new insights about optimizing the surface 

characteristics of cemented carbides to produce adherent diamond coatings in the dry 

cutting manufacturing chain of high silicon aluminum alloys. 

An alternative method to measure the practical adhesion on commercial diamond 

coatings that can be correlated with the machining performance is proposed to be used 

when other methods (scratch, nanoindentation, microindentation, pin-on-disk, etc.) are 

not viable.  

This research is the first comprehensive and systematic work that links the 

surface/subsurface integrity of cutting tools with their ability to produce an adherent 

diamond coating capable to dry machine high silicon aluminum alloys. 
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CHAPTER 1. INTRODUCTION 

 

1.1. Research Overview 

Capturing the unique properties of carbon in its crystalline diamond structure 

requires knowledge of both material science and manufacturing techniques. The final 

diamond coating performance not only depends on the diamond properties itself, but also 

on the substrate surface characteristics that it is deposited on. In addition to the adhesion 

of the coating to the underlying substrate base, a compromise between fracture toughness 

and wear resistance is required for cutting applications.  

Cemented carbide tools enriched with cobalt binder levels from 3 - 13 wt% to 

provide high fracture strength are the most commonly used tool materials for machining 

applications. When diamond is deposited on these substrates, Co represents an issue to 

the final diamond adhesion as a consequence of the carbon-cobalt solubility (0.2 – 0.3 wt 

%) at diamond CVD temperatures as shown in Figure 1.1, which promotes the diffusion 

of carbon in cobalt and produces a weak non-diamond layer at the interface, preventing 

diamond nucleation and creating voids with a detrimental effect on the final diamond 

adhesion.  
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In order to overcome these issues, any proposed solution must suppress the 

detrimental effect of cobalt, maximize the adhesion by increasing the mechanical 

interlocking between the coating and the substrate, and enhance the interface toughness. 

 

Figure 1.1. Phase diagram of Co – C system depicting the interdiffusion range at standard 
diamond CVD conditions on WC-Co substrates. Adapted from Mallika and Komanduri 
[1] 

 

Numerous solutions have been evaluated in scientific literature to increase the 

diamond adhesion when deposited on cobalt cemented carbide substrates, however, the 

majorities do not take into account the practical conditions encountered when using 

commercial carbide tools existing in the market as the substrate material of interest. In 

most of these research studies, substrate samples correspond to WC-Co coupons with 

surface conditions that differ from the commercial tools and cutting inserts. Moreover, 

the pretreatment effects in the surface/subsurface modifications of the carbide tool 
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materials used as a substrate for further diamond deposition have not been systematically 

evaluated, specifically, in terms of the Co depletion/halting approach effect with respect 

to the resulting dry machining performance. This type of analysis may exist as the 

internal know-how of CVD diamond tool makers, who normally optimize the process 

variables for particular customer applications.  

The present study proposes a systematic approach, supported from the 

fundamental aspects required in producing an adherent diamond coating on cemented 

carbides, followed by the modification of the substrate surface/subsurface characteristics, 

analyzed along the resulting diamond quality in terms of adhesion, and finally concluded 

from the machining behavior of the diamond coatings under a real dry machining 

scenario. Most of the traditional studies conclude about diamond adhesion from 

evaluating the results obtained by final indentation or scratch techniques on the coatings. 

In contrast, the present approach provides a comparison between indentation techniques 

and the dry machining results by using diamond coatings that have been deposited using 

the same growth characteristics and thicknesses (25 – 30 µm) than the commercial 

microcrystalline diamond (MCD) tools found in the market.  

Despite the recent interest in the use of nanocrystalline diamond (NCD) coatings 

in cutting tools due to their tribological advantages, or the evaluation of multilayered 

MCD/NCD architectures, this dissertation is mainly focused on the interfacial aspects 

required to achieve an optimal diamond coating adhesion. Different surface pretreatments 

are evaluated in terms of the effects produced on the carbide substrate surface textures 

and subsurface modifications when using chemical etchings or physical vapor deposited 
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(PVD) inter-diffusion barrier layers to overcome the effects of the Co binder. A final 

correlation between the substrate pretreatments and the failure of the diamond coating 

under indentation and dry machining cutting operations is analyzed. The synergy between 

the fundamental and practical aspects of surface engineering principles tailored to 

improve the practical adhesion of diamond is presented in this dissertation, and will 

positively impact the final performance regardless of the diamond coating architecture. 

The overall research approach is summarized in Figure 1.2. 

 

Figure 1.2. Proposed research approach 
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In order to fulfill the aforementioned approach, the main objective of this research 

can be stated as to investigate the performance of newly developed CVD diamond coated 

tools, by modifying the surface characteristics of commercial cemented carbide tools, 

with the aim to improve the interfacial conditions necessary to achieve an adherent 

diamond coating intended for dry machining-cutting operations.  

Several interface engineering approaches have been reported in the last 15 years 

with the aim of reducing the undesired catalytic effect of cobalt on diamond adhesion. In 

order to maximize the practical adhesion of diamond coatings on cemented carbides, any 

approach must halt the interdiffusion effect of cobalt. The most widely successful 

techniques discussed in the literature are related to the cobalt removal in depths ranging 

in about 3 – 10 µm from the substrate surface by using chemical etching methods, or by 

halting the cobalt effect on the surface by depositing interdiffusion barrier layers, that 

also diminish the thermal stresses caused during the diamond growth.  

In the present research, the effects of these interfacial approaches will be 

correlated with the dry machining performance when using specific experimental 

conditions intended to analyze their effects in the substrate (cutting tool) with the aim to: 

• Establish the amount of surface/subsurface integrity preexisting in the 

commercial tool and how influences the optimization of the subsequent 

surface pretreatment methods 

• Characterize the effect of two chemical etching methods in the 

surface/subsurface morphology of the tool 
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• Evaluate a potential re-diffusion of Co from the bulk to the pretreated 

surface during the deposition of diamond coatings when chemical 

pretreatment methods are used 

• Characterize the role of CrN/Cr interdiffusion barrier layers in the 

adhesion improvement of diamond coatings deposited in cemented carbide 

substrates 

• Study the delamination process of diamond coatings during indentation 

methods and its correlation with each surface pretreatment 

• Quantify the resulting tool life and machining performance of the 

pretreated diamond coated cutting tools under specific dry cutting 

conditions 

• Analyze the corresponding wear failure mechanism of the diamond coated 

tools after dry machining operations 

 

1.2. Diamond Structure and Synthesis 

Diamond is a cubic modification of crystalline carbon known as the diamond 

lattice and arranged as two interpenetrating face centered cubic Bravais lattices derived 

from a sp3 covalent chemical bond as shown in Figure 1.3. There are eight atoms per unit 

cell distributed among eight corners, six face centers, and four other lattice positions for a 

total of 1.77E1023 atoms/cm3, which corresponds to the highest atomic density of any 

material. 
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Figure 1.3. Crystal diamond structure viewed as two interpenetrating face centered cubic 
(FCC) Bravais lattices. The near distance between neighbor atoms is 1.54 Å and the 
lattice parameter a is 3.567 Å at 298 K [2] 

 

There are many exceptional properties of diamond in addition to being the hardest 

known material. Diamond also has the lowest compressibility, the highest elastic 

modulus, the highest thermal conductivity of all solids in the temperature range of 90 to 

1200 K. It also has the lowest specific heat of all solids in the temperature range of 0 to 

800 K, a considerably higher mobility associated with holes for p-type doped diamond 

than the hole-mobility of either silicon or gallium arsenide, and also, pure diamond has 

the largest optical transmission bandwidth of any solid material [3]. A summary of some 

diamond properties is compiled in Table 1.1. 
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Table 1.1. Summary of properties of diamond compared with reference materials 

PROPERTIES DIAMOND 
REFERENCE 

MATERIAL 

COMMENTS 

FOR 

DIAMOND 

KNOOP 

HARDNESS 

5700 – 10,400 

kg/mm2 

Hardened Steel: 

400 Kg/mm2 

Depending of 

the 

crystallographic 

orientation of 

the sample 

MOHS 

HARDNESS 
10 Steel tool: 6 – 7 

10 is the largest 

value of the 

scale 

YOUNG’S 

MODULUS 
1050 GPa 

Tungsten Carbide 

WC: 450 – 650 GPa 

Five times 

higher than steel 

THERMAL 

CONDUCTIVITY 
20 W/cm-K 

Copper: 4.01 

W/cm-K 

At room 

temperature 

SPECIFIC HEAT 6.195 J/mol-K 
Aluminum: 24.2 

J/mol-K 
At 300 K 

ENERGY BAND 

GAP 
5.47 eV Silicon: 1.11 eV At 300 K 

DIELECTRIC 

CONSTANT 
5.7 Neoprene: 6.7 At 20 °C 

 

The new developments in characterization techniques during the last century, and 

the improvement in scientific apparatuses by the use of new materials, reliable 

manufacturing processes, and new concepts in physics, made a significant impact in the 

synthetic diamond production.  One of the most important contributions was made by 
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Percy William Bridgman in the field of high-pressure physics. Bridgman synthesized 

numerous new materials by pressurizing all different kinds of compounds in his anvil by 

using a revolutionary non-extruding gasket device. However, Bridgman was not able to 

produce synthetic diamond, but his developments on high pressure systems opened a new 

era in physics that allows the final achievement of producing synthetic diamonds in the 

near future.  

The final successful diamond synthesis was only possible by doing innovative 

modifications to the existing Bridgman’s apparatus, which allowed producing high 

pressures and high temperatures at stable conditions for significant periods of time. 

Afterward, the so called “belt” apparatus was designed by H. T. Hall in 1953, capable of 

reaching pressures of 3,000,000 psi and temperatures up to approximately 5,000 °C at the 

same time [4]. Using these capabilities, F. Bundy was able to make a significant 

contribution to the diamond field by proposing the new pressure-temperature phase 

diagram of carbon shown in Figure 1.4 [5]. Later on, the final goal was achieved by 

scientists (H. Nerad, F. Bundy, H. Strong, R. Wentorf, Etc.) at the General Electric 

Company in 1955, when they announced the results from a reproducible synthesis 

process of artificial diamond [6]. 

Today, it is possible to synthesize commercial diamond at high pressure (HP) and 

high temperature (HT) states. This HP-HT synthesis process is mostly used in industrial 

applications to produce polishing, grinding, cutting, and sawing products. However, at 

these conditions it is not possible to deposit diamond over large surface areas. The 

importance and interest of diamond synthesis at low pressure is based on the unique 
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properties that can be achieved using this method to deposit conformal functional 

coatings on the surface of solid materials, including new thin film architectures and 

nanosized films based on the deposition of microcrystalline (MCD) or nanocrystalline 

(NCD) structured diamond by using low pressure synthesis methods like Chemical Vapor 

Deposition (CVD).  

 

Figure 1.4. Pressure-temperature phase diagram of carbon. Diamond is a stable form of 
carbon only above line A. Scientist of General Electric synthesized diamond on region B 
using Ni as a catalyst. C represents a synthesis region with no metal solvent used by 
Bundy, D is a high pressure but lower temperature synthesis region, and E represents the 
metastable growth of diamond film conditions at low pressure-low temperature [5]  

 

A CVD process uses a gaseous feedstock containing a carbon source and an input 

of energy to the system which breaks the carbonaceous gas in diverse subspecies for the 

donation of carbon atoms to the substrate, then promoting the growing of a diamond film 
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over the surface when specific low pressure-temperature conditions are used. This film is 

used to enhance the mechanical, electrical, thermal, optical, or electrochemical properties 

of different materials in specific product designs, including new kinds of electrodes, 

electronic devices, sensors, high quality loudspeakers, thermal management applications, 

bearings, and cutting tools.  

More details about the diamond CVD synthesis and characterization will be 

discussed in Chapter 3, with particular interest in the growth mechanism and 

characterization of the diamond coatings deposited by Hot Filament Chemical Vapor 

Deposition (HFCVD) technique, which is the synthesis process used to deposit the 

diamond on the tool substrates during this research. 

 

1.3. The Importance of Diamond Coatings for Machining Operations 

Cutting fluids are traditionally introduced to machining processes in order to 

perform uninterrupted metal cutting operations, prolong tool life, improve surface finish, 

prevent workpiece overheating, remove chips from the cutting area, and reduce contact 

wear [7]. However, these benefits represent a considerable cost to production schemes in 

terms of disposal, recycling, healthcare premiums, and inventory, including new 

challenges from environmental legislation and footprint impact [8]. 

The estimated global market of over $1500 million in 2007 (increasing 6% 

annually) related to equipment used in filtration and separation of cutting fluids [9], 

provides an important reason to companies in seeking new strategies to reduce fluid 
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consumption or remove them entirely from the machining operation. Additionally, 

companies are facing an increase in environmental concerns against the disposal of 

cutting fluid effluents in river/sewer discharges, mainly due to the toxic nature of 

nitrogen compounds present as emulsifiers in common cutting fluids. 

Subsequently, all of the above-mentioned reasons influence the industry towards 

more cost effective and green manufacturing approaches, like minimum quantity 

lubrication (MQL), minimum quantity cooling (MQC), and dry machining cutting 

operations. Among these, dry machining represents the ultimate environmental goal of 

metal cutting [8]; however, it also faces new challenges in terms of the cutting tool 

integrity as a result of the high forces, high temperatures, and chemical interactions 

developed when going dry. 

In order to overcome the detrimental effects in the cutting tool material associated 

to the harsh conditions developed during dry machining, the resulting tribological 

interface must be understood in terms of the friction and wear mechanisms at the contact 

region on the tool. The cutting process as a tribological system is illustrated in Figure 1.5, 

which is determined by the contact couple (cutting tool and workpiece), the operational 

parameters, and the environment medium [10]. Under these circumstances, the cutting 

tool represents the fundamental body in the process and constitutes the main aspect to be 

addressed during this research dissertation, by improving the tool performance when 

using diamond coatings deposited on commercial cemented carbides. 
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Figure 1.5. The cutting process as a tribological system. Adapted from Weinert et al. [11] 
and WorldPress [12]  

 

Nowadays, there is an uprising trend in the dry machining of composite metals 

such as aluminum-silicon alloys and aluminum matrix composites as the result of the 

environmental impact of coolants used in traditional wet machining, disposed in the form 

of mist, waste, and coolant-coated chips produce a harmful effect to the environment 

[13].  
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Diamond coatings have been proposed to enhance the performance of cemented 

carbide tools in the dry machining of aluminum alloys for the automobile and aerospace 

industries [14]. Particularly, aluminum alloys are very abrasive and extremely difficult to 

dry machine with conventional PVD TiN coated materials due to the formation of built-

up layer (BUL) or built-up edge (BUE) over the rake surface of the tool [15]. The 

exceptional hardness and wear properties of CVD diamond coatings would be very 

suitable for this purpose [16]. 

 However, machining performance of diamond coated tools is not yet robust due 

to the non-optimized adhesion between the carbide tool and the deposited diamond. An 

insufficient coating adhesion of the cutting tool would render it too inadequate or lead to 

unpredictable behavior and even possible catastrophic failure in the production. As a 

consequence, the development of new automated high-speed machine centers and the use 

of composite metal materials in the design of complex-geometry products, create a big 

challenge for diamond coated cutting tools under dry machining conditions. In this 

dissertation, a surface engineering approach is applied to WC-Co turning inserts in order 

to improve the diamond coating adhesion and the subsequent machining performance in 

the dry machining of high silicon aluminum alloys. 

 

1.4. CVD Diamond Cutting Tools 

There are two kinds of coating technologies in the market for diamond cutting 

tools, high pressure (HP) - high temperature (HT) polycrystalline diamond (PCD), and 

low pressure chemical vapor deposited (CVD) micro and nanocrystalline diamond.  
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In polycrystalline diamond tools, diamond grits produced by HP-HT synthesis are 

compacted and sintered with cobalt as a binder to form a thick PCD tip, which is 

subsequently attached (brazed) to the substrate material, commonly cemented carbides 

like WC-Co, which have a high strength, toughness, and high hardness to be used in 

cutting tool applications.  

In contrast, the low pressure approach produces a diamond thin-film coating (5-

35µm) that is directly deposited onto the surface of the carbide by the chemical vapor 

deposition (CVD) technique. Thick CVD freestanding diamond wafers (150 – 1000 µm) 

are also produced, which the aims of these are to be laser-cut and attached to carbide 

substrates in a similar fashion than the PCD tips but at a higher cost when compared to 

conformal direct thin-film CVD synthesis.  

The ability to form a conformal coating over a complex-geometry is a remarkable 

advantage of the CVD technology, allowing the capture of diamond in shapes not 

available in the industry previously. CVD diamond coated carbide tools were initially 

introduced to the market at the 1994 International Manufacturing Technology Show in 

Chicago by four tool-making companies (Crystallume, Sandvick Coromant Co, 

Kennametal, and Teledyne Advanced Materials-Cutting Tools), fulfilling earlier 

expectations about the practical use of CVD diamond cutting tools. This was also 

possible by the introduction of the first commercial microwave chemical vapor 

deposition system (MWCVD) from Applied Science and Technology Inc. (ASTeX®), 

capable of producing 300 SPG-422 style cutting inserts coated with 20 µm-thick diamond 

per day [17]. However, even though all the benefits brought by CVD diamond coated 
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tools at that moment, new challenges emerged in terms of how to improve the adhesion 

of the diamond coating and extend the cutting tool life, and still remain today.  

Initial studies tried to overcome the undesired catalytical role of Co present in the 

cemented carbides as the binder, which has a negative influence in the resulting diamond 

adhesion and the machining performance when compared with PCD tools [18]. The 

cobalt effect must be minimized or suppressed in order to achieve a practical adhesion 

between the diamond and the cemented carbide.  

Multiple approaches have been evaluated in the last fifteen years, and will be 

discusses later as part of the surface engineered treatments evaluated in this dissertation. 

For the moment, visualize the diamond coating and the WC-Co substrate material as a 

“composite” system, where the interface between the coating and the substrate plays an 

important role in the tool behavior and the resulting dry machining performance. This 

system is shown in Figure 1.6 which depicts a microcrystalline diamond (MCD) coating 

deposited on a surface modified WC-Co substrate. 
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Figure 1.6. Microcrystalline diamond (MCD) coating (top) deposited in a WC-Co 
substrate. This image corresponds to a cross section produced by fracture  

 

1.5. Dissertation Scope and Outline 

The scope of this dissertation in terms of the activities necessary to achieve the 

main research objective is discussed as the sum of the following tasks: 

• To understand the process variables and material properties involved in 

the deposition of diamond coating by chemical vapor deposition (CVD) 

• To produce different engineered surfaces on commercial WC-Co cutting 

tool substrates, in order to promote the interlocking mechanism in the 

diamond coating and decrease the detrimental effects of the Co binder 

• To deposit diamond coating at different processing conditions 
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• To characterize the properties of diamond coatings, resulting from 

different interfaces, including microstructure, crystal characteristics, 

residual stresses, and adhesion 

• To evaluate the dry machining performance of the diamond coated tools in 

terms of cutting forces, tool life, and wear failure mechanisms, in 

correlation with the different surface engineered interfaces and initial 

adhesion 

• To provide a guideline in surface engineering techniques in order to 

improve the CVD diamond coated tool adhesion during dry machining 

operations 

Chapter 2 provides a background on machining and tooling topics for cutting 

operations, describing the essential concepts required to explain the mechanisms and 

behaviors associated to the dry machining results discussed in this dissertation. This 

chapter discusses the key aspects related to the orthogonal cutting model in terms its 

fundamental concepts, the development of cutting forces and how are resolved in turning 

operations, a brief description about the required properties for cutting tool materials, 

some important tool wear and tool failure mechanisms, and a cutting tool life criteria. 

Chapter 3 presents the insights about synthetic diamond growth with particular 

interests in diamond coatings grown by microwave chemical vapor deposition 

(MWCVD) and hot filament chemical vapor deposition (HFCVD) processes, the latter 

being the one used to deposit the MCD coatings on cutting tools evaluated in this 

dissertation. Important characterization techniques are discussed in this chapter with 
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emphasis in the micro/nano structural aspects of diamond grown by CVD methods and 

their influence in the resulting diamond coating quality. Relationships between the 

structural properties of diamond films and their application in tool coatings will be also 

established. 

In accordance to the categories established for surface engineering technology, 

this dissertation deals with the optimization of substrate surfaces in terms of adhesion, to 

successfully deposit diamond coatings and enabling coating technology to be applied in 

industrial applications. Accordingly, Chapter 4 corresponds to the discussion about the 

experimental work done during this research in regard to the deposition of CVD diamond 

coatings on cemented carbides. It begins describing details about the synthesis 

requirements for diamond coatings on WC-Co turning inserts, then discusses the surface 

conditions necessary to achieve successful adhesion between the substrate and the 

diamond coating, and finally presents an analysis of the significant surface features 

obtained by using different pretreatments on the tool substrates, which will provide the 

main input to the subsequent understanding about the diamond coating adhesion under 

dry machining conditions. This surface engineered analysis represents a key objective in 

terms of the wear and failure modes of diamond coatings deposited on commercial WC-

Co cutting tools. 

Chapter 5 discusses the characterization of diamond coatings deposited on the 

pretreated surfaces of WC-Co turning inserts in terms of the structural properties obtained 

from depositions by a HFCVD process. In addition, a comprehensive evaluation of the 

coating behavior under Rockwell indentation conditions is presented. This analysis 
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encompasses a correlation between the structural properties of the diamond coatings, the 

estimated stress conditions, and the delamination analysis correlated with the initial 

substrate surface characteristics discussed in Chapter 4, by the use of several 

characterization methods. 

The final dry machining behavior of the diamond coated turning inserts is 

presented in Chapter 6. The selection of the workpiece material and the dry machining 

conditions is discussed initially in this chapter. This includes the cutting forces evolution 

and the acoustic emission profiles from the tool during the total cutting process on the 

workpiece. Later, a wear and delamination failure analysis of the diamond coated cutting 

tools is presented in terms of the consequential tool life achieved from the initial substrate 

surface characteristics. 

Finally, Chapter 7 provides the conclusions and closing thoughts as part of this 

research dissertation with the aim to correlate the experimental results from previous 

chapters and propose suggestions for future work on the present field. 
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CHAPTER 2. MACHINING AND TOOLING BACKGROUND 

 

2.1. Introduction to Metal Cutting 

In a simple explanation, metal cutting can be understood as a category of 

manufacturing processes, which includes a group of cutting operations intended to 

remove material from the surface of a workpiece by producing chips or abrasion with the 

aim to fabricate a part with the desired dimensions and surface finish. Conventional 

machining processes consist of mechanical cutting operations at a macro scale which use 

a sharp cutting tool mounted in a power-driven machine known as the machine tool to 

produce a specific geometry out of a bulk material. These operations include turning, 

drilling, milling, broaching, and other cutting configurations. 

A schematic representation of a turning operation where the cutting tool moves 

axially to the left at a certain velocity per workpiece revolution, know as feed, to reduce 

the radius of a cylinder in an amount determined by the value of a depth of cut, is shown 

in Figure 2.1. The cutting action of the tool removes a layer of material as it moves to the 

left producing a chip, which moves towards the top surface of the tool known as the tool 

face. 
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Figure 2.1. Schematic of a turning operation depicting its characteristic features [19] 

 

Nowadays, the importance of material removal operations may be realized by the 

continuous advances in high technological products which demand the use of new 

materials and novel manufacturing techniques to produce them at competitive production 

levels. In this case, machining may be the only available manufacturing process to 

produce parts from advanced materials such as carbon fiber reinforced polymers, 

graphite, magnesium, titanium alloys, high silicon aluminum alloys, and other types of 

hybrid materials, in a net-shape condition or close to the final desired specifications. This 

fact has a significant influence in the development of advanced cutting tools capable of 

dealing with the challenging machining conditions imposed by the new product 

requirements and evolving metal cutting scenarios. 
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Consequently, another important aspect about metal cutting operations from a 

material science and engineering point of view is related to the interaction between the 

workpiece material and the cutting tool during the cuttings, which operate as a system in 

terms of thermal exchange, chemical reaction, and mechanical contact, and constitute the 

fundamental factor in the resulting behavior of their surfaces. These interactions lead to 

the constant development of new cutting tool materials designed to sustain particular 

machining conditions, and constitute, in particular, the main scope of the present 

research. 

In order to understand the mechanics involved in machining operations, an 

idealized two-dimensional model of chip formation proposed by Ernst and Merchant in 

the 1940s is depicted in Figure 2.2. This scheme known as the orthogonal cutting model, 

represents a wedge-shaped cutting tool moving to the left at a constant velocity, V, and a 

depth of cut, to, removing a layer of metal ahead of the tool in the form of a chip, by 

plastically deforming and shearing a plane surface extending upward from the cutting 

edge. In comparing Figure 2.1 and Figure 2.2, the feed in turning operations is equivalent 

to the dimension to, and the depth of cut is equivalent to the width of the cut, w.  
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Figure 2.2. Orthogonal cutting model scheme as a three dimensional process [20] 

 

In Figure 2.2, the tool has a rake face, corresponding to the surface in contact with 

the chip flow, and a ground back relief surface or flank face, which clears the workpiece 

machined surface. These two sets of faces define the rake angle, α, and the relief or 

clearance angle of the tool, respectively. The orthogonal cutting model also defines a 

shear plane or shear zone (the inclined plane in Figure 2.2) where the cutting action takes 

place by shearing, produced by the cutting edge of the tool (the line perpendicular to the 

page), and located at the contact point between the tool and the workpiece. Moreover, 

this two-dimensional model represents a simplified useful approach to study the resulting 

cutting forces and chip formation originated from a single plane of interest, rather than a 

three-dimensional model. 

 Workpiece and cutting tool materials, surface conditions, and their interactions, 

produce a number of factors that define the metal cutting operation, classified as 
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independent variables, which influence the development of other parameters in the 

cutting process, known as dependent variables that affect the final result of the machining 

process. Figure 2.3 shows an illustration of these factors that influence the cutting and 

their interrelationships with the final machining performance. 

Therefore, in the present research work, cutting parameters have been selected in 

order to minimize the experimental workpiece material consumption during cutting, 

when high silicon aluminum alloys are dry machined in turning operations, by using 

surface modified cemented carbide (WC-Co) square indexable inserts coated with a thick 

microcrystalline diamond film. The main objective of this dissertation is focused in 

analyzing the resulting dependent variables in terms of the cutting forces developed 

during cutting, the tool wear mechanism, and the diamond coating failure, when the 

previous independent factors are chosen.  

The effect of the temperature will be evaluated in terms of the presence of crater 

wear in the tool rake face after cutting. However, this is kindly unexpected due to the 

exceptional thermal conduction properties of diamond. The resulting conditions and 

integrity of the workpiece surface after machining will not be evaluated in the present 

research. 
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Figure 2.3. Factors that influence metal cutting operations 
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2.2. Cutting Forces During Machining 

As discussed, the chip formation due to the cutting action is produced by shearing 

localized at the zone where the tool acts in a rake angle, α. In Figure 2.4, the equilibrium 

free body analysis of the chip considers the action of only two equal forces defined as the 

force acting between the tool rake face and the chip (R’), and its opposite force (R) acting 

along the shear plane localized at the interface between the chip and the workpiece. 

These two forces can be resolved in a set of components as also shown in Figure 2.4: 

• The ones resolved out of the resultant force R in the horizontal and 

vertical direction, Ft and Fc, known as the thrust force and cutting force, 

respectively. The cutting force acts in the direction of the cutting speed, V, 

and provides the required cutting energy. The thrust force is normal to the 

cutting force; it represents the force that has to be provided by the machine 

tool in the direction of cutting 

• The ones along and perpendicular to the shear plane, Fs and Fns, known as 

the shear force and normal force. These forces can be expressed in terms 

of Ft and Fc from analytical correlations with respect to the shear angle, φ 

• The forces along and perpendicular to the tool rake face, F and N. The 

ratio between these forces determines the coefficient of friction at the tool-

chip interface. The angle λ is known as the friction angle 
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Figure 2.4. Schematic of the free body diagram depicting the resultant and resolved 
forces acting on the chip. Adapted from [21] 

 

Thrust force and cutting force can be determined experimentally by using 

dynamometers and the rest of them by analytical correlations as mentioned. The 

importance in estimating the cutting forces resolved during machining is due to avoiding 

undesired deflections in the machine tool, minimizing distortions in the machine 

components, obtaining accurate dimension in the machine part, and calculating electrical 

power consumptions. 
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In turning operations, the three principal forces developed from the cutting force, 

F, due to the contact of the cutting edge with the workpiece during machining are shown 

in Figure 2.5. The tangential cutting force Ft acting downward on the tool edge supplies 

the energy for cutting and accounts for more than 95% of the machining power. The axial 

force Fa, or feed force, is mainly due to the feed rate, pushing the tool away from the 

holding fixture. The radial force, Fr, is generated from the workpiece pushing action. 

 

Figure 2.5. Forces acting in cutting tool during turning. Adapted from [22] 

 

The evolution of the forces during machining provides estimation about the 

integrity of the tool during cutting. The machining performance of the tool can be 

evaluated by analyzing the variation of the forces, especially the axial and radial forces, 

which normally experience a sudden increase as the tool fails.  
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In this research, these forces were measured with the aim to evaluate the 

performance of the diamond coated tools and associate the force changes with coating 

delamination and the subsequent tool failure. During experimental conditions, cutting 

forces can be measured by using piezoelectric dynamometers. These devices are built 

using electromechanical transducers made from crystalline materials like SiO2 (quartz) 

and BaTiO3 (barium titanate) which exhibit identifiable dipoles at its ends when strong 

electrical fields are applied. If an electrode is attached to the crystal ends, any distortion 

due to mechanical tension or compression will result in a change in voltage.  

Establishing the appropriate locations of the surfaces in a piezoelectric crystal 

with respect to its axe, a shear or normal stress can be sensed by the generation of a small 

electrical charge correlated to the value of the input force. Figure 2.6 a) shows a three-

component piezoelectric quartz dynamometer (Kistler ®) utilized in the present research 

to measure the three orthogonal components of the force. Additionally, a typical graph 

representing the output signal of the tangential, axial, and radial forces during machining 

is shown in Figure 2.6 b). 
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a)       b) 

Figure 2.6. Three-component dynamometer and its built-in charge amplifier including the 
output signal data representation corresponding to the three orthogonal components of the 
cutting force [23]. The holes in the platform plate allow accommodating tool shanks 
during turning operations  

 

2.3. Tool Wear and Failure 

During metal cutting operation, the tool experiences an aggressive environment as 

the result of the high forces leading to high localized stresses and high temperatures 

developed at the tip of the tool. The cutting tool must withstand the cutting forces without 

fracturing or deforming excessively. In addition, approximately 98% of the energy 

consumed in machining is converted to heat, so the cutting tool must not soften and fail 

due to plastic deformation and loss of its sharp edge. 
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However, even if the cutting tool is able to endure these conditions, continual 

wearing of the tool becomes the ultimate failure mechanism causing the tool to fail at 

some point during cutting. In this latter case, the tool time to failure or tool life is 

determined by the selection of the independent variables listed in Figure 2.3. 

All of the aforementioned tool failure mechanisms have to be controlled in order 

to minimize the amount of machining products out of dimensional specifications, avoid 

damages to the machine tool, and reduce the overall manufacturing cost. Out of the 

possible failure modes, gradual wear is the preferred because it produces the longest 

possible tool life during machining, maximizing the production rate or minimizing the 

cost per unit. The gradual wear of the tool is basically produced by wear mechanisms 

such as adhesion, abrasion, diffusion, fatigue, delamination, microchipping, fracture, and 

plastic deformation [24]. 

During machining operations, wear failures occur mainly at the top rake face 

(crater wear) and the flank of the tool (flank wear), shown in Figure 2.7. In this figure, 

the locations of both can be distinguished; the crater and flank wear with respect to the 

depth of cut and feed parameters during cutting, including other wear zones known as the 

nose radius and notch wear. 

The amount of wear at the flank of the tool is measured by the average flank 

wear-land (VB), correlated with an increase in friction during the process due to a 

decrease in the relief angle on the flank face of the tool. Figure 2.8a depicts the 

representation of the wear bandwidth (VB) in the flank face of the tool. Figure 2.8b 
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shows an optical image from the flank face of a worn diamond coated turning insert after 

cutting. 

 

Figure 2.7. Illustration of the typical types of wear and locations in a worn cutting tool 

 

 

   a)     b) 

Figure 2.8. a) Scheme of the wear-land in the flank face of a cutting tool indicating the 
average flank wear distance (VB) and b) optical image of the flank of a diamond coated 
carbide turning insert evidencing the flank wear-land after cutting 
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The tool life (min) resulting from the selection of particular machining 

independent variables is given by a criteria adopted in terms of the amount of the VB 

value that avoid the final catastrophic failure of the tool. In a traditional tool wear 

behavior, three wear zones are evidenced when the VB value is plotted versus the cutting 

time.  

These regions are visible in a wear growth curve as shown in Figure 2.9, 

characterized by a rapid initial wear rate or break in period, followed by a steady-state 

wear zone, finally reaching the undesired failure region where wear begins to accelerate. 

This behavior is mainly affected by the cutting speed, V, the workpiece material, and 

cutting tool material. The tool life criterion avoids using the cutting tool until the final 

failure point in order to maintain the quality of the production and the integrity of the 

machine tool. A common tool life criterion for tungsten carbide tools cutting mild steel is 

a value of 0.030 in (0.75 mm) for the maximum allowable wear-land value, VA. When 

Figure 2.9 is plotted using log-log coordinates, a tool life equation known as the Taylor 

tool life equation represents the wear behavior 

    VTn = C     (2.1) 

where V is the cutting speed, T is the tool life, and C and n are constants depending on 

the feed, depth of cut, tool-workpiece material, and the tool life criterion used.  
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Figure 2.9. Variation of the wear-land value (VB) with time (t) for three cutting speeds 
(v). The dashed line indicates the tool life criterion used to avoid the sudden failure 
region [25]  

 

2.4. Dry Machining Operations 

As discussed in Chapter 1, dry machining is the ultimate goal of eco-friendly 

metal cutting. The environmental impact is due to the possibility to remove the negative 

effect of cutting fluids in terms of pollution of the atmosphere (or water), health, and the 

end-user manufacturing costs, which are higher than the labor and tools cost, accounting 

for 17% of total manufacturing cost in the automobile industry [26]. 

Traditionally, cutting fluids are important during machining operations because 

they help to reduce the heat generated during the operation, extend the tool life, maintain 

dimensional stability, wash chips away from the cutting zone, prevent the adhesion of 
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material to the edge of the tool (built-up edge), and improve the surface finish of the 

product [27]. 

On the other hand, new environmental regulations established by the 

Occupational Safety and Health Administration (OSHA) trough its Metalworking Fluid 

Standards Advisory Committee (MWFSAC), are focused in reducing the amount of 

exposure to metalworking fluids by incorporating medical surveillance to the workers in 

conjunction to a monitoring systems at the workplace.  

These efforts are made in response to petitions filed to OSHA by The United Auto 

Workers who requested a decrease in the cutting fluids exposure limits from 5.0 mg/m3 to 

0.5 mg/m3 [28]. Consequently, dry machining constitute a metal cutting scenario with a 

promising future by completely removing the cutting fluids out of the manufacturing 

process, however, it is subjected to technical barriers that still limit its applicability. 

Analyzing the orthogonal model during metal cutting, the primary shearing plane 

is characterized by a zone where a chip is removed from the workpiece around the tip of 

the cutting tool, creating a new clean and chemically active surface under the presence of 

high normal stresses. These conditions create an ideal scenario for the formation of solid 

face welding at the tool face, especially at large contact lengths with low cutting speeds, 

promoting a strong adhesion of work at its surface, capable to produce a secondary shear 

zone along the tool rake face. This mechanism contributes to the development of high 

temperatures at the chip-tool interface, potentially above 900 °C [7].  

Therefore, the action of entirely removing the cutting fluids from the machining 

operations needs to be accompanied by a methodical approach to control the high 
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temperatures developed in the overall process when running dry, particularly in removing 

the chips away from the cutting zone, which carry 85% of the heat generated from the 

cutting action.  

In dry machining, the resulting heat from the friction between the tool and the 

workpiece material is higher as a consequence of the high temperatures developed, 

increasing the adhesive wear that promotes mechanical interlocking and diffusion 

between the chip and the tool, ultimately decreasing the tool life. However, there is no 

guarantee that introducing cutting fluids result in an improvement in the heat transfer 

problem by following the traditional cutting fluid application approaches. In some 

particular cases, the cooling action of the cutting fluid goes to regions that are not 

necessarily the “hot spots” during cutting. Cooling must be directed to the interaction 

zone between the chip and the workpiece (the heat source) and not being focused to the 

surrounding warm regions [29]. In some other cases during interrupted machining 

operations, the additions of cutting fluid may induce thermal shocks on the cutting 

materials. 

In other cases, adding cutting fluids may produce stains on the surface of some 

workpiece materials and contaminate them. This is an important aspect to consider when 

machining biocompatible materials intended to be part of medical implants such as hip 

and knee ball joints. Open-faced machining operations such as turning and milling are 

more suitable for dry machining because the chips leave the cutting zone out of the 

proximity of the tool and workpiece carrying the heat away. In closed-faced machining 

operations such as drilling and tapping, chips cannot be flushed out of the cutting zone 
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easily, so if there is no other mechanism to remove them, heat builds up, negatively 

affecting the tool performance during cutting. For instance, in drilling applications chips 

could bind in the hole increasing the roughness of the machined surfaced. 

In addition, machining strategies in terms of using MQL or near-dry machining 

approaches in some cases, selecting new tool geometries to reduce friction, adopting new 

fast chip removal machine tool concepts, increasing cutting rates, and using novel air 

handling systems, are proposed to overcome the consequences of dry machining 

operations [30]. 

The workpiece material properties with respect to their ductility, toughness, and 

adhesive behavior also have an influence in deciding if dry machining is an appropriate 

approach to machine them. Figure 2.10 shows the common materials used in modern 

machining applications and its suitability for dry machining. Magnesium alloys need to 

be dry machined under an inert atmospheres due to potential fire hazards from the 

magnesium chips at high temperature in contact with oxygen [31]. Titanium and its alloys 

are extremely difficult to dry machine due to its low thermal conductivity, sticky 

behavior under cutting, and low flash point. These conditions can cause ignition of the 

workpiece during dry cutting if a cooling media is not supplied to during cutting.  

Therefore, cutting fluids are still required to cut titanium until today. Steel 

materials and cast irons can be dry machined under certain operational conditions by 

using reduced depth of cuts, high surface speed and feed rates, and air blast systems with 

the aim to remove the chips away from the cutting zone [27]. However, stainless steels 

have difficulties associate to the formation of built-up-edge (BUE) along the cutting edge 
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decreasing the surface finish quality of the workpiece. In the case of martensitic alloys, 

over-tempering may also occur.  

 

Figure 2.10. Suitability of workpiece materials for dry machining. Adapted from Weiner 
et al. [11] 

 

During the last ten years, aluminum alloys represent one of the most used 

workpiece materials in dry machining operations. This trend is also influenced by the 

increase in using aluminum alloys in engines and powertrain components in the 

automobile industry. In general, cutting fluids are not necessary during aluminum alloys 

cutting processes because the temperatures are not as high as compared with steel. 

However, the high thermal conductivity of the aluminum may cause deformation to the 

workpiece due to its high thermal expansion coefficient.  
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The addition of silicon in the range of 2 – 20% to the aluminum composition 

produces alloys with high wear resistant properties, low thermal expansion coefficient, 

and load-bearing capacities for reduced weight components such as pistons, engine 

blocks, cylinder heads, transmission cases, pump bodies, etc [32].  

The aluminum-silicon phase diagram is characterized by a eutectic point at 12.6% 

that originates the precipitation of hard and abrasive silicon particles for compositions 

greater than this value. This is the case of the common A390 18% Si-aluminum alloy 

used in the automobile industry which is very difficult to machine using conventional 

machining processes and tools.  

Unconventional marching processes such as water jet [33], laser-assisted [33], 

ultrasonic [34], electrochemical spark [35], and electro-discharge cutting [36],  have been 

evaluated, but are limited in mass production applications due to their resulting 

production time, operational costs, and surface/subsurface integrity effects when 

compared to traditional machining approaches. Due to the necessity in achieving high 

cutting speeds to evacuate the chips away from the cutting zone during the dry machining 

of Al-Si alloys, cutting tools technology is the key factor to improve the performance of 

the operation. 

 

2.5. Diamond Coatings for Dry Machining of High Silicon Aluminum Alloys 

The ability to retain hardness at high temperatures (hot-harness) is a critical 

property for any cutting tool material in order to maintain its wear resistance and strength 
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at the high temperatures encounter during dry machining operations. Moreover, 

toughness in cutting tool materials is essential to avoid failures produced by fracture. 

There are other factors that determine the abrasion wear resistance of such as its 

surface finish, chemical stability, and thermal characteristics. However, hardness is the 

most important property needed to withstand the harsh conditions resulting from dry 

machining operations as the result of the abrasive action of the silicon particles present in 

aluminum alloys with silicon contents greater than 12%.  

Also, the purpose of maintaining the hardness at high temperature is attributable 

to maintain the integrity of the tool cutting edge or tool nose during cutting, so the 

workpiece surface texture remains constant during the operation. This problem could be 

solved by decreasing the cutting speed; however, this may not be a good practice in dry 

machining due to the necessity to evacuate the chips as quick as possible from the cutting 

zone, worsen for the machining of heat-insulating materials.  

Particularly for high silicon aluminum alloys, silicon particles can be detached 

during cutting, get airborne and deposited on the tool surface then diffused into the tool at 

high temperatures causing a continuous degradation of the tool with a detrimental effect 

in machining performance [37]. 

Traditional cutting tool materials generally do not exhibit all the previously 

discussed properties in a single composition. Actually, optimizing one of them may lead 

to a decrease in others, so chemical and structural modifications in the tool geometry 

have to be done in order to achieve the desired performance out of the tool. High speed 

steels (HSS) experience a decrease in the hot-hardness at high temperatures during dry 
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machining operations and do not exhibit good abrasion resistance in machining high-

silicon aluminum alloys. Cermets are limited by their non optimal fracture strength at 

high loads which makes them brittle when cutting dry in some cases. Cubic boron nitride 

(CBN) has a hardness and chemical stability close to diamond and is the cutting tool 

material of choice in the dry cutting of ferrous materials, a field that is unfeasible for 

diamond tools because the diffusion effects produced at the high temperatures during the 

dry machining operations. An important technological approach is related to the 

development of advanced protective coatings deposited by PVD and CVD techniques on 

the tool surface, which is the case in the present research, particularly for diamond 

coatings. Tool coatings technology is the optimal solution to overcome the challenging 

conditions encountered during the dry machining of high-silicon aluminum alloys. The 

main characteristic of any tool coating is to provide a heat barrier to the tool substrate as 

the result of their lower thermal conductivity, so the tool as a body can absorb less heat 

and extend its cutting life.  

One of the most common coatings in dry machining applications is titanium 

aluminum nitride (TiAlN) coatings produced by PVD methods deposited on the tool 

substrates like cemented carbides, surpassing titanium nitride (TiN) coatings in high 

temperature uninterrupted cutting operations when high thermal stresses are present. This 

behavior is attributed to the formation of amorphous aluminum oxides at the tool coated 

surface during cutting induced by the dry machining high temperatures. Aluminum oxide 

can also be produced by CVD processes to coat cutting tools intended for dry machining 

operations. Diamond is the best candidate for dry machining operations of high-silicon 

aluminum alloys because it possesses most of the desired properties for a cutting tool 



www.manaraa.com

43 
 

when going dry. These properties are described in Table 2.1. Diamond can be used as a 

single crystal cutting tip, a polycrystalline diamond (PCD) tip sintered directly in the tool 

cutting edge, a thick CVD diamond free-standing wafer attached to the tool tip, or as a 

thin CVD diamond film conformally deposited to the geometry of the tool. The CVD 

synthesis processes can produce diamond films in a microcrystalline grain size structure 

(MCD), a reduced nanocrystalline grain-sized film (NCD), or a multilayered MCD/NCD 

coating. The advantages and disadvantages of each of them are summarized in Table 2.2. 

The performance of diamond coatings in the dry machining of high-silicon aluminum 

alloys related to the surface characteristics of cemented carbide substrates prior the 

diamond deposition is evaluated in Chapter 6 of the present research. 

Table 2.1. Desired properties of CVD diamond for dry machining applications. Adapted 
from Cline and Olson (2002) [38] 

CRITICAL PROPERTY ROLE IN THE PERFORMANCE OF DRY 
MACHINING 

HARDNESS 

Diamond is the hardest known material that 
provides outstanding wear behavior combined 
with its capability to retain the hardness at 
elevated cutting temperatures 

THERMAL EXPANSION COEFFICIENT 
Diamond possesses a low thermal expansion 
coefficient which is critical to maintain the 
dimensional stability of the tool 

THERMAL CONDUCTIVITY 
Diamond has a highest thermal conductivity 
which helps to spread the heat away from the 
cutting edge and provide an increase in tool life 

CHEMICAL STABILITY 

Diamond is chemically inert in applications that 
do not involve its oxidation or corrosion such as 
high oxygen atmospheres. Diamond is the best 
candidate to dry machine nonferrous alloys, 
which do not represent chemical diffusion issues 
at high temperatures 

MECHANICAL STRENGTH AND 
FRACTURE TOUGHNESS 

Good for tool edge retention during cutting and 
comparable to advanced ceramics such as silicon 
nitride 

COEFFICIENT OF FRICTION (COE) 

Diamond COE is similar to Teflon, which 
minimize the adhesion during the dry machining 
of smooth workpiece materials, improving 
surface finishing, lower cutting forces, and less 
frictional heating 
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Table 2.2. Properties of CVD diamond for dry machining applications. Adapted from 
Cline and Olson (2002) [38] 

DIAMOND STRUCTURE ADVANTAGES DISADVANTAGES 

Single-Crystal Diamond 

High thermal and dimensional 
stability during cutting  
 
Superior surface finish 
 
High dimensional tolerance can 
be achieved 
 
Suitable for ultra precision 
machine tools 

High  production costs for 
complex geometries 
 
Low fracture resistance due to 
directional properties along 
the single crystal directions 

Polycrystalline Diamond 
Compacts (PCD) 

Uniform mechanical properties 
due to the random grain 
orientation 
 
High shock resistance 
 
Larger tool size 
 
Superior tool life and high 
productivity for nonferrous 
workpiece materials compared to 
HSS and coated carbides. 
 
It can be polished in different 
surface grades 

High production cost when 
compared to cemented 
carbides and ceramic tools 
 
Tool geometry constrains. 
 
Small coated area 
 
Depth of cut limitations 

Thick-Film CVD Diamond 

High thicknesses range 
 
Lower production cost compared 
to PCD tools 
 
Cutting edges can be reground 

Depth of cut limitations 
 
Uniformity and defect 
formation difficult to control  
 
 

Thin Film CVD Diamond 

MCD MCD 
High diamond phase content (sp3 
bonds) 

Preferential crack propagation 
along grains 

NCD NCD 
Smother surface with better 
tribological characteristics 

Presence of non diamond 
phases (sp2 bonds) 
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CHAPTER 3. CVD DIAMOND SYNTHESIS AND STRUCTURE 

 

 

3.1. The CVD Synthesis Process 

A Chemical Vapor Deposition (CVD) process – also known as vapor-phase 

epitaxi (VPE) – is a technique considered very suitable for the development and 

manufacturing of thin films coatings and fibers from different materials, including 

compounds like carbides, nitrides, and oxides. Also, it is very useful in the surface 

modification technology areas, especially in the electronic industry for the doping of 

semiconductors to change their electrical conductivities. This technology covers a wide 

spectrum of film thicknesses ranging from the nanoscale up to microns, exhibiting 

several differences among their characteristics in terms of the resulting properties for the 

desired application. 

In simple terms, a CVD process is a kind of reaction in which a gaseous specie is 

activated and deposited on a substrate surface in a class of vapor-transfer process as the 

result of a deposition of atoms or molecules, or a combination of both as shown in Figure 

3.1.  
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Figure 3.1. Basic principle of the chemical vapor deposition CVD synthesis. Image Credit 
(itech.dickinson.edu) [39] 

 

The CVD reactions occurring during the process are governed by the 

thermodynamics of the reaction (driving force) that indicate its direction and the kinetics 

which define the transport process and the material transfer rate mechanism. In CVD 

synthesis, the transport of energy occurs when the gaseous compounds inside the 

chamber react to form the atomic/molecular deposits and the by-product gases of the 

reactions. A thermodynamic analysis will indicate what to expect from the reactants 

when they reach the surface of the substrate at the process temperature, but a mass 

transport analysis gives us the answer about how these gases reach the surface. 
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An approximate sequence of events during a CVD process can be summarized as 

the following: 

• A gas feedstock enters the chamber 

• A diffusion process from the gases occurs inside the vacuum chamber 

• A source of energy activates the gases  

• Gas reactions are dissociated in atomic/molecular subspecies 

• Atomic/molecular subspecies come in contact with the substrate surface 

and are absorbed (diffusion at the surface) 

• Deposition takes place onto the surface of the substrate due to chemical 

reactions 

• By-product gases of the reaction are diffused away from the surface 

It is important to mention that another technique named physical vapor deposition 

(PVD) is also available for thin film depositions, such as evaporation, sputtering, 

molecular beam epitaxy, and ion plating processes. The distinction between CVD and 

PVD vacuum processes relies in the way materials are transferred onto the substrate; in 

CVD synthesis, the deposition occurs by a chemical reaction from the material gaseous 

subspecies, whereas in PVD, the deposition occurs when the solid material source (target) 

is vaporized, transported atom by atom across the chamber to the substrate, and 

condensed onto its surface. CVD synthesis is usually endothermic and PVD deposition is 

exothermic. 
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The most important reason in using CVD technologies is to produce new kinds of 

material properties that are impossible to find if we try to use a homogeneous material. 

Today this is possible through the deposition of materials in the form of thin film 

coatings. These coatings create surfaces with properties that are different from the bulk 

and provide the opportunity to develop new product designs in different areas.  

Nanostructured materials are obtained also by using CVD techniques. The CVD 

of nanocrystalline powders, nanowires, and nanotubes (e.g. carbon nanotubes) are some 

examples of the different kinds of advanced applications in the material science field. 

According to the type of industry, applications of CVD products could be classified such 

as electrical, opto-electrical, optical, mechanical and chemical. The advantages and 

limitations of CVD are shown in the Table 1.1. 

There are two major focus research areas for CVD processes in recent years, one 

is focused on the semiconductor industry in the production of electronic devices, and the 

other one named metallurgical – coating industry focused on cutting tool coating 

technologies. New trends in the integration between CDV and PVD technologies have 

been achieved in the last few years for novel equipment designed with the concept of 

cluster tools which may incorporate CVD, etching, sputtering, and ion implantation in 

one piece of equipment. Metallo-organic CVD (MOCVD) is one of the recent process 

variations of CVD with the use of lower deposition temperatures that permits the use of a 

broader spectrum of substrates. 
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Table 3.1. Advantages and limitations of CVD. Adapted from Pierson (1999) [40] 

ADVANTAGES LIMITATIONS 
• Is not restricted to a “line sight” 

deposition which is the main 
requirement in sputtering systems 
and other PVD techniques 

 
• High flexibility to coat complex 

geometries and shapes 
 

• High deposition rates 
 

• Uniform films with good 
reproducibility 

 
• Thick coatings can also be obtained 

 
• Normally it doesn’t require complex 

high vacuum equipments 
 

• High flexibility due to the different 
gas compositions used during the 
deposition 

 
• It has the ability to control crystal 

structure, surface morphology, and 
orientation of the deposited films by 
controlling the process parameters 
such as gas ratios, pressure, substrate 
temperature, and energy power 

• Is most versatile at 
temperature above 600 ˚C 

 
• Requires chemical precursors 

(starter materials) with high 
vapor pressure which are 
generally hazardous 

 
• Toxic and corrosive by-

products 
 

• Difficult to deposit 
multilayered /multicomponent 
materials 

 
• High cost for vacuum systems 

in some CVD variants 

 

The nature of the film deposited and the rate of nucleation for the process are 

strongly affected by the nature of the substrate. This is called the type of epitaxi for the 

process. Epitaxi can be understood as the crystal growth of a film on a crystalline 

substrate surface. Depending on the nature of the combination between the substrate and 

the deposited material, the phenomena is known as homoepitaxi for the same deposit and 

substrate material or lattice parameter, and heteroepitaxi when is different, but epitaxial 

growth it is not possible for great differences [40]. 
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The final crystal microstructure of the resulting deposited film is a function of 

deposition conditions, especially temperature. The microstructure for a CVD process can 

be classified into three major types, columnar grains, faceted columnar grains, and 

equiaxed fine grains as shown in Figure 3.2.  

 

 

Figure 3.2. Schematic microstructures obtained by CVD: a) columnar grains, b) faceted 
columnar grains and c) equiaxed fine grains [40] 

 

Furthermore, the microstructure has different characteristics depending on the 

type of material. Ceramics obtained by CVD (e.g. SiO2, Al2O3, Si3N4) tend to be 

amorphous or with some small quantities of equiaxed fine grains, metals tend to be more 

crystalline displaying columnar grains. The highest mechanical properties in terms of 

hardness and fracture toughness can be achieved with equiaxed fine grains 

microstructure.  
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3.2. CVD Diamond Synthesis 

As discussed in Chapter 1, diamond can be grown over a substrate using 

deposition methods at low pressure by means of a gaseous feedstock (CH4) in addition to 

energy (thermal, electrical, etc.) that dissociate the gas for the deposition. There are four 

commonly used CVD techniques for the synthesis of diamond to achieve the required 

energy for the dissociation process of the molecule from the input gases: hot – filament 

reactors, microwave plasma reactors, DC arcjet reactors, and combustion synthesis 

reactors. All of them have significant variations in their engineering aspects but they have 

important features in common [41]: 

• Large amounts of energy (electrical or chemical) for the dissociation 

process of the molecular hydrogen and the hydrocarbon (CH4) 

• Moderately low pressure (20 – 100 Torr) to prevent the recombination of 

H ions to molecular hydrogen 

• High temperatures for the gas ambient in the activation zone (greater than 

1700 °C) and the use of cooling systems to hold the substrate temperature 

at a lower temperature (~900 °C) 

Differences among the reactor types involve different transport processes and 

growth rates: 

• Microwave plasma and hot-filament CVD reactors are characterized by a 

diffusion process. The growth rate is a weak dependent of input gases, and 

flow velocity to the system. The driving force for the film deposited is the 

linear gradient in temperature between the highest temperature zone 
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(filament or plasma) and the substrate surface, in addition to the gases 

concentrations 

• Arc-jet and combustion CVD reactors are characterized by higher growth 

rates and higher temperatures reached in the substrate that may cause a 

significant limitation for some materials 

The chemistry involved in diamond deposition is complex in comparison to other 

CVD synthesis processes due to the many chemical reactions originated from the 

different gases and the nature of each process. It is also very important to achieve 

deposition of sp3 carbon in order to maintain the bonding state corresponding to diamond 

and the desired crystalline configuration. The typical parameters for deposition are a 

pressure in the range of 50 – 100 Torr, a hydrocarbon – hydrogen gas composition of 1% 

CH4 in H2, a total gas flow rate of 25 – 800 sccm, temperatures between 700 - 900 °C 

using microwave plasma enhanced chemical vapor deposition (MPECVD) technologies. 

It is important to note that under these conditions the stable form of carbon is graphite 

according to the phase diagram for carbon, but the kinetics of the reaction produce 

crystalline metastable diamond phase instead of graphite by the reaction of the 

hydrocarbon precursor combined with the radical formation and graphitic etching action 

of atomic hydrogen [42]. 

CH4(g)  C (diamond) + 2H2      (3.1) 

The schematic reactions for convectional MPECVD are shown in Fig. 3.3. 
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Figure 3.3. Schematic mechanism for conventional MPECVD diamond deposition and 
the corresponding activation reactions for the process 

 

To achieve diamond depositions over nondiamond substrates, additional surface 

pretreatments are required in order to produce nucleation sites for the diamond growth 

and improve the adhesion of the film. These pretreatments are known as seeding 

processes and can be achieved by different methods, including ultrasonic scratching with 

diamond nanopowders in a alcohol solution [43], high methane concentration in low 

pressure plasma treatments [44], substrate surface scratching with diamond micropowder 

paste [45], or bias enhanced nucleation (BEN) [46]. Figure 3.4 depicts homogeneous 

diamond seeds distribution in a silicon substrate after being exposed 30 minutes in a 

diamond growth plasma composition with the aim to characterize the nucleation density 

of the seeding method. 
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Figure 3.4. Distribution of diamond seeds deposited in a silicon substrate after exposed 
30 min in a diamond growth plasma 

 

The incubation time for nucleation depends on conditions on the substrate such as 

the interface bonding type, coefficient of thermal expansion, lattice parameter, diffusivity 

properties etc. The best surface conditions to promote good high diamond nucleation 

density are related to the ability of the substrate material to form carbides, which is also 

an essential condition to achieve a good adhesion of the film.  

Transition metals and alloys of iron, nickel, and cobalt are considered to be non 

viable substrates for diamond deposition due to the high bulk diffusion rates of carbon in 

these materials, which promote a graphitization instead of a diamond phase nucleation 

and the homoepitaxial growth of the diamond film at the substrate surface [47,48]. 

Consequently, buffer layers must be used as interdiffusion barrier layers to overcome the 

poor nucleation density on these substrate materials. 
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Diamond grain size can be controlled by manipulating the gas feedstock 

chemistry, gas rations, and process pressure during the synthesis where a secondary 

nucleation (diamond on diamond) becomes dominant in a dendrite type of growth. Other 

subspecies can be added to the diamond chemistry in order to modify the growth rate, 

surface termination, and electrical conductivity, i.e. nitrogen and boron.  

Nanocrystalline diamond (NCD) films can be deposited in microwave enhanced 

chemical vapor deposition (MWCVD) reactors as shown in Figure 3.5 by adding Argon 

gas to the feedstock and following the process conditions summarized in Table 3.2. By 

reducing the H2 content in the gas chemistry from 99% to 1% and consecutively 

replacing it with argon, the grain size of the diamond films can be reduced from several 

microns to a few nanometers. 

 

Figure 3.5. Cyrannus I ® IPLAS MPECVD reactor at University of South Florida 

 

M.W GeneratorGrowth Chamber M.W GeneratorGrowth Chamber
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The transition of the grain size of diamond films from microcrystalline to 

nanocrystalline regime was systematically studied by depositing films at different Ar/H2 

ratios. Scanning electron microscopy images depicting the surface morphology of the 

diamond films grown in different argon compositions are shown in Figure 3.6. The 

presence of argon in the reactant gas mixture promotes the concentration of highly 

reactive C2 dimers that enhance the secondary heterogeneous re-nucleation and aids the 

growth of NCD [49]. 

 

Table 3.2. Process conditions for the deposition of NCD and MCD films by using the 
MWCVD reactor at University of South Florida 

Deposition 

conditions 
CH4 Ar H2 

Microwave 

Power 
Pressure 

Substrate 

Temperature 

Nanocrystalline 

Diamond (NCD) 
0.5% 98.5% 1% 1.8 kW 135 T 750 ˚C 

Microcrystalline 

Diamond (MCD) 
1% - 99% 1.0 KW 25 T 800 ˚C 
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Figure 3.6. SEM images of diamond films grown with different Ar percentages: (a) 0%, 
(b) 50%, (c) 75% and (d) 98% [49]. © Inderscience [50] 

 

Both NCD and MCD films can be obtained also by the hot filament chemical 

vapor deposition (HFCVD) synthesis process by increasing the methane concentration 

[51] or by decreasing the process pressure when Argon is added to the chemistry [52]. In 

HFCVD systems, the energy required to achieve the gas activation is provided by 

refractory metal filaments (i.e. tantalum or tungsten) heated to temperatures around 

2000°C. The temperature in the filaments is produced by a voltage generated between a 

pair of electrodes and along the filaments array. This particularity confers to HFCVD 

synthesis great flexibility in depositing diamond coatings on complex 3D geometries. 

Filament arrays can be positioned close to the surface of interest and can vary in number 

(e) 
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and orientation depending on the substrate requirements. Figure 3.7 shows the HFCVD 

system at University of South Florida and a schematic of its important components. The 

main component is the vacuum chamber where gases are flowed inside at the desired 

flow rate. The substrate is placed underneath a pair of tungsten filaments by a sample 

retracting system, the pressure is controlled by a two pressure valves connected to the 

vacuum line, and voltage is generated between the electrodes by using a voltage 

regulator; the amount of voltage defines the deposition temperature at the filaments. 

Cooling water runs through a copper line wrapped around the vacuum chamber. Argon 

gas is used to vent the chamber to atmospheric pressure after the deposition process. The 

process conditions used to deposit MCD and NCD films in this system are summarized in 

the Table 3.3. 

 

 

Figure 3.7. Bluewave Semiconductor ® HFCVD reactor at University of South Florida 
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Table 3.3. Process conditions for the deposition of NCD and MCD films by using 
HFCVD reactor at University of South Florida 

Deposition conditions CH4 H2 Voltage (V) Pressure 

Nanocrystalline Diamond 

(NCD) 
9% 91% 80 20 T 

Microcrystalline Diamond 

(MCD) 
3% 97% 90 20 T 

 

 

3.3. CVD Diamond Structure 

There are many techniques for the characterization of diamond properties in 

accordance with the field of interest. Also, there are specific characterization methods for 

CVD diamond films in order to ensure the development of the growth morphology (MCD 

or NCD), the microstructure condition, the grain orientation, the chemical compounds 

present, the type defects developed during the growth, the surface texture and 

morphology, and the amount of carbon bonding (sp2 or sp3). 

 

3.3.1. Scanning Electron Microscopy (SEM) 

The principle of scanning electron microscopy (SEM) is the detection and 

visualization of secondary and backscattering electrons coming from the interaction 

between an electron beam and the sample surface. Conventional light microscopes use a 
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series of glass lenses to bend light waves and create a magnified image. When a focused 

electron beam strikes the sample surface, different types of signals are generated from the 

sample as shown in Figure 3.8. 

The focused beam scans the surface of the sample and the signals are detected by 

different sensors depending on the type of analysis. Secondary electrons (low energy) 

indicate information about the surface of the specimen. Backscattering electrons come 

from a deeper interaction zone of interest and provides information about the chemistry 

distribution (atomic number) of the sample. X-rays are used for chemical analysis due to 

the dependence of the magnitude of an x-ray signal and the atoms which produce it. 

 

Figure 3.8. Schematic representation of emission events generated in the scanning 
electron microscope [53] 
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The final image is built up from the number of electrons emitted from the sample 

at much higher magnifications than a light microscope. SEM is an invaluable tool for the 

observation of CVD diamond films in terms of surface morphology and growth patterns. 

Figure 3.9 corresponds to a group of SEM micrographs that depict the reduction in the 

diamond films grain size deposited by HFCVD synthesis at different methane 

concentrations. Larger faceted diamond grains are observed for low methane 

concentrations whereas more equiaxed ball-agglomerates grains are present at higher 

concentration. 
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Figure 3.9. SEM micrographs corresponding to the deposition of diamond films at 
different methane concentrations by HFCVD synthesis 
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3.3.2. Transmission Electron Microscopy (TEM) 

TEM works similar to the SEM principle except that it transmits a beam of 

electrons through the specimen rather than raster the beam across the sample. The 

transmitted beam is then projected onto the viewing screen, forming an enlarged image of 

the sample. TEM has a high spatial resolution (~ 0.2 nm) in imaging, so it is possible to 

achieve a good characterization in the nanometric scale to identify a large number of 

defects which cannot be detected by other techniques. 

Information about crystal symmetry, specimen thickness, and lattice distortion 

can also be obtained by special methods, such as the convergent-beam electron 

diffraction. In nanocrystalline diamond (NCD) applications, various types of planar 

defects can be observed like twining, boundaries and stacking faults as the result of 

different substrate materials, surface pretreatment methods, and growth parameters. 

Figure 3.10 shows the high-resolution TEM (HRTEM) image of a NCD film. It 

was estimated that the grain size of diamond crystals was ~ 10 to 15 nm and the grain 

boundary width between 0.2 and 0.4 nm. The inset shows a sharp ring pattern 

corresponding to (111), (220), and (311) planes of the diamond crystal indicating the 

polycrystalline nature of the film. There were no reflections due to graphite or amorphous 

carbon observed showing the phase purity of the diamond. From HRTEM image, the 

inter-planar spacing between the (111) planes was found to be ~ 0.205 nm. From this 

characterization analysis, it was found that the diamond films grown by the current 

technique resulted in high quality and preserved the outstanding properties as of those 

deposited form hydrogen rich plasma. 
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Figure 3.10. HRTEM image of an Ar/1%H2/1% CH4 NCD film. The inset image shows a 
SAED pattern image. © Inderscience [50] 

 

3.3.3. X-Ray Diffraction 

X-ray diffraction (XRD) is a characterization technique used to determine the 

crystal structure arrangement of materials. Diffraction occurs when a wave encounters a 

series of regularly spaced obstacles that are capable of scattering the wave and to have 

spacings that are comparable in magnitude to the wavelength. The x-ray beams 

(electromagnetic radiation) strike the surface of a solid material and a portion of the beam 

scatters in a direction associated with the type of atom or ion across the beam path. The 

diffraction is based on the Bragg’s law that considers the relationship among x-ray 

wavelength, the interatomic spacing, and the angle of diffraction during the exposure. 

Common diffraction techniques employ powder or polycrystalline samples with fine 

randomly oriented particles to ensure the required orientation for all possible 
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crystallographic planes diffraction. XRD is sensitive to the presence of crystalline 

carbons such as diamond, so it is very useful to characterize CVD diamond films. In 

MCD and NCD diamond films, XRD diffraction is used to determine the growth 

orientation and the final texture of the film. Figure 3.11 shows the (111), (220) and (311) 

peaks corresponding to the ring patterns shown in Figure 3.10. 

 

 

Figure 3.11. X-ray diffraction spectra corresponding to NCD films grown on a silicon 
substrate by MWCVD synthesis depicting the (111), (220), and the (311) reflexions. The 
peak corresponding to the Si single crystal substrate orientation has been removed from 
the spectra 

 

 

 

 



www.manaraa.com

66 
 

3.3.4. Raman Spectroscopy and NEXAFS 

Raman spectroscopy (RS) is one of the most important tools for the chemical 

characterization of diamond thin films. With RS it is possible to achieve real time 

characterization of compounds in a non – contact mode. The sample is illuminated with a 

laser which produces a scattering light that can be used to identify functional groups in a 

molecule without the contamination or damage of the sample. The name of this technique 

is associated with the Raman Effect, a phenomenon resulting from the interaction of light 

and matter due to the vibrational and/or rotational motions of molecules with the 

electromagnetic radiation.  

This characterization technique utilizes the singular response that different 

materials exhibit when exposed to a monochromatic light source, such as a laser. As a 

consequence of the atomic structure of its compositional material, the sample vibrational 

energy causes some of the incident photons from the laser to be inelastically scattered. 

The Raman spectrometer detects and measures this inelastic scattering, known as the 

Raman shift. When the resulting Raman shift is represented graphically, a 

characterization curve is obtained, which is unique to the subject material. Raman 

spectroscopy provides several key advantages for the investigation of diamond films 

deposited with CVD techniques.  

As diamond films have both sp3 and sp2 bonded carbons, it is very important to 

precisely estimate their fraction. Raman spectroscopy is primarily used to qualitatively 

determine the sp2-graphitic allotrope and the sp3-diamond allotrope. Figure 3.12 shows 

the micro Raman spectra of MCD and NCD films grown on Si substrates by using a 
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visible green argon laser (514.5 nm) to probe the density of optical photon states in the 

bulk material, yielding an indirect measurement of the predominant chemical bonding In 

MCD films, a sharp peak is observed at 1332 cm-1 representing the strong sp3 

characteristics. With the addition of argon, the intensity of the diamond peak at 1332 cm-1 

becomes indistinct due to selective Raman scattering of sp2 vs. sp3 bonded carbon. 

 

Figure 3.12. Raman spectra of H2/CH4 and Ar/H2/CH4 diamond films grown on Si 
substrates, MCD and NCD, respectively. © Inderscience [50] 

 

Figure 3.13 shows the Raman spectra of diamond films grown on a Si substrate 

by HFCVD synthesis under two different methane concentrations. The increase of the 

methane content in the feedstock composition promotes a decrease in the diamond grain 

size as discussed previously, decreasing the amount of sp3 diamond bonds due to the 

excess of carbon in the surface. This can be observed by the decrease of the 1332 cm-1 

diamond peak with respect to the graphitic phase present at 1473 cm-1 and the increase of 
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the trans-polyacetylene (TPA) state at 1130 cm-1 [54,55], which confirms the higher 

sensitivity of Raman spectroscopy to sp2 graphitic bond scattering modes. 

 

Figure 3.13. Raman spectra of CH4/H2 diamond films grown on a Si substrate by HFCVD 
displaying the structural characteristics with respect to the methane concentration 

 

Due to the dependence on the long edge order of the material, it is difficult to 

distinguish a material with 96% sp3 bonding from a material with 85% sp3 bonding using 

the visible Raman spectrometry. These limitations can be surpassed by near-edge x-ray 

absorption fine structure (NEXAFS) technique. Figure 3.14 shows the total electron yield 

(TEY) C (1s) photo-absorption data of MCD and NCD films. After analyzing the data by 

using analytical calculations from the information derived from the Figure 3.14 and the 

TEY corresponding to a highly ordered pyrolytic graphite (HOPG) reference substrate 

[56,57], it was estimated that ~ 8 % of the total carbon in the NCD films was sp2 bonded 

carbon; while the MCD films contain ~ 5 % sp2 bonded carbon. The slight increase in the 

sp2 bonded carbon in NCD films is due to increased amount of grain boundaries which 

host the sp2 carbon. 
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Figure 3.14. TEY NEXAFS spectra of diamond films deposited with and without Argon. 
© Inderscience [50] 

 

3.3.5. Atomic Force Microscopy 

The Atomic Force Microscope (AFM) principle is similar to a phonograph or 

profilometer on a much smaller scale. A very sharp cantilever tip is dragged across a 

sample surface and the change in the vertical position reflects the topography of the 

surface. By the collection of data from successive line measurements, it is possible to 

form a two-dimensional image of the surface roughness. The different heights sensed by 

the cantilever are used to form a complete map of the surface. 

Figure 3.15 shows the surface morphologies obtained by AFM measurements 

corresponding to two different diamond films grown on Si substrates by HFCVD 

synthesis at two different methane concentrations.  
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Figure 3.15. AFM images corresponding to the surface characteristics of two diamond 
films grown on Si substrates by HFCVD synthesis at different methane concentrations. 
Insets include the surface profile values Rq, Ra, Rmax, Rp, and Rv for the area of analysis 
and the values of Ra and Rq for a particular box selected area 
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One of the most important aspects to achieve a practical diamond thin film 

adhesion in cutting applications is the roughness profile of the tool surface which is 

strongly related with the wear rate. High surface roughness for microcrystalline diamond 

result in high friction and severe wear losses. However, there is a big opportunity to 

enhance the wear performance of diamond thin films with the growth of NCD with a low 

coefficient of friction associated. Basically, the fine finish of the sample surface (20 – 40 

nm) is enough to guarantee a very good surface smoothness for the enhancement of the 

wear behavior.  

 

3.4. The Synthesis of Diamond Films on Cutting Tools Substrates 

As discussed in Chapter 1, when diamond is deposited in cemented carbide 

materials such as WC-Co substrates, the cobalt will play a detrimental catalytic role in 

the final diamond film adhesion. Any proposed solution must suppress the detrimental 

effect of cobalt and increase the mechanical interlocking between the film and the 

substrate in order to enhance the film interfacial toughness.  

Different surface pretreatments have been proposed in the literature for WC-Co 

substrates with the aim to modify the surface roughness and halt the effect of the cobalt, 

so interface engineering techniques can be specifically aimed to improve the diamond 

coating adhesion. Since an increased surface roughness has been found to enhance the 

diamond nucleation density and promote a film interlocking behavior [58], surface 

pretreatment efforts can be tailored accordingly. The diamond-substrate interface requires 

the formation of strong interfacial chemical bonds between the diamond crystallites 
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nucleated at the surface and the atoms of the substrate. Several interface engineering 

approaches have been reported in the last 15 years with the aim to reduce the undesired 

catalytic effect of cobalt on diamond adhesion. 

The most widely successful techniques discussed in the literature are related to the 

cobalt removal in depths ranging in about 3 – 10 µm from the substrate surface by 

etching the cobalt out of the surface [59-61], halting the cobalt effect on the surface by 

depositing interdiffusion barrier layers that also diminish the thermal stresses caused 

during the diamond growth [62-68], and depleting the cobalt at the surface by selective 

thermal treatment methods [69-71]. 

The use of chemical etchings in the surface of WC-Co substrates represent the 

most cited pretreatment method in the literature. This method has the purpose to produce 

a selective etching of the cobalt binder by using a two step chemical process composed 

by an initial wet treatment in a Murakami solution with the aim of reconstruct and rough 

the surface by attacking the WC grains and exposing the Co binder, then, a second wet 

etching in an acid solution to reduce the exposed cobalt at a certain depth determined by 

the etching time. Other methods have been proposed the use of CuSO4 solutions to 

produce a Cu cementation reaction to dissolve the cobalt at the substrate surface [72]. 

Interlayer materials used to avoid the cobalt-diamond interdiffusion are normally 

deposited by PVD methods. In order to choose the proper interlayer, the selected material 

must remain stable during the diamond deposition, provide a diffusion barrier between 

carbon and cobalt, have a low thermal expansion coefficient to minimize internal stresses, 

and provide a carbide formation surface to improve diamond nucleation [73,74]. These 
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conditions are normally improved by using nanometer sized metal thin layers like Cr, 

SiC, and Ti at the top or bottom in a multilayer architecture. Typical hard coating 

materials used as interlayer for the adhesion improvement of diamond coatings include 

CrN, TiN, TiC, SiC, and Si3N4. Additional diamond particles may be peened at the top of 

the interlayer surface to provide additional diamond nucleation sites and serve as anchors 

to the final diamond coating.  

Perhaps the extensive amount of information found in the literature in regard to 

improving the adhesion of diamond coatings on cemented carbide substrates by 

numerous pretreatment combinations and diamond growth parameters, very few correlate 

the surface characteristics of the substrate with respect to the dry machining performance 

of the diamond coating during cutting operations. A comprehensive list that summarizes 

a literature review of diamond coatings dry machining performance during the last ten 

years is shown in Table 3.4.  

The criteria established to develop the review contained in Table 3.4 is based on 

considering experimental works that use commercial cutting tool materials as substrates, 

propose particular surface pretreatment methods to enhance the diamond adhesion, 

discuss the surface characteristics resulting from the pretreatments, evaluate the diamond 

structural properties with respect to the synthesis CVD method used, measure the 

adhesion of the diamond film by any practical experimental technique, provide 

information of the dry machining performance of the coated tool, and finally discuss the 

resulting failure mechanism of the diamond coating.  
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Table 3.4. List of experimental research works conducted to enhance diamond coated tools adhesion in dry machining applications 

Substrate Characteristics Substrate 
Pretreatment 

(Surface 
Features) 

Diamond Coating Characteristics Initial 
Adhesion 

Evaluation 

Machining Evaluation  
Failure 
Mode Ref. Material Geometry Synthesis Structure Thickness 

(µm) 
Workpiece 
Material Regime 

WC-Co 
ISO 

K10,8–10 
wt% Co  

Twist drill bits Etching 
(N/A) HFCVD NCD 1.5-14 N/A 

Blocks of 
WC-5.5 wt% 

Co 

Dry 
Drilling N/A [75] 

Fine-
grained 
carbide 
with 6% 

Co 

2-flute twist 
drills 

Etching and 
Electro-chemical 

Etching 
(N/A) 

MWCVD NCD 10.0 Indentation A390 alloy Dry 
Drilling 

Diamond 
peeling [76] 

WC–6% 
Co 

10 mm × 10 
mm × 3 mm 

Etching 
(N/A) HFCVD MCD 10.0 

Indentation 
and 

Friction Test 
(ball-on-plate) 

GFRP Dry 
Turning Flank Wear [77] 

WC–6% 
Co Inserts Etching HFCVD N/A 6.0 N/A Al-12% Si 

alloy 
Dry 

Turning 

Coating 
flaking in 
both rake 
and flank 
surface 

[14] 

cemented 
carbide  

Turning Insert 
with a tool 

nose radius of 
0.4  

N/A N/A 

“rough” 
monolayer, 

smooth 
monolayer, and 
both combined 

6.0 N/A SiC-Al 
(MMC) 

Dry 
Turning 

High wear 
rate and 

breakage of 
coating 

 

[78] 
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Table 3.4. (Continued) 

(WC) 
with 6 
wt.% 

cobalt  

Square-shaped 
inserts 

(SPG422) 

N/A 
(N/A) MWCVD NCD 25-30 N/A A359/SiC-

20p  
Dry 

Turning 

Low wear 
rate 

followed by 
an abrupt 

increase in 
flank wear 
(coating 
flaking) 

[79] 

WC 6–8% 
cobalt  

300 μm 
diameter, two-
flute end mills 

Etching 
(N/A) HFCVD 

Fine Grain 
Dispersed (FGD) 

and NCD 

0.5-1.0 and 
0.2-0.3 N/A 6061-T6 

aluminum 

Dry 
Micro 

Milling 

Coating 
flaking 

(NCD) and 
tool fracture 

(FGD)  

[80] 

WC 6% 
cobalt  

Turning inserts 
of geometry 

SPUN 120308, 
ISO K10 grade 

Etching and 
substrate  
(Surface 

Roughness 
comparison)  

HFCVD- 
bias 

enhanced 
MCD N/A Indentation Rolled 

aluminum 
Dry 

Turning 
Flaking of 
the coating [81] 

WC–
6 wt.% Co 

Turning inserts 
SPGN120308 

Etching 
(N/A) MWCVD NCD and MCD 35 (both) Indentation A390 (18wt% 

Si) 
Dry 

Turning 
Gradual 

flank wear [82] 

Si3N4 

Round 
(RNMN1003 
M0FN) and 

triangle 
(TNMN160308

FN) inserts 

None 
(N/A) HFCVD NCD and MCD 22 ± 2 (both) N/A High quality 

EDM graphite 
Dry 

Turning 

Crater depth 
wear and 

flank wear  
[83] 

WC–6% 
Co 

Drills have a 
37-mm total 
length with a 
diameter of 3 

mm 

Etching 
(removal of 

grinding marks) 

DC arc 
plasma 
CVD 

NCD ~ 5.0-6.0 N/A 

SiC particles 
reinforced 
aluminum 

matrix 
composite 

Dry 
Drilling 

Abrasion 
and no 

peeling  
[84] 
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Table 3.4. (Continued) 

Si3N4 

Insert with 
cylindrical 

shape with 10 
mm of 

diameter and 3 
mm of 

thickness 

None 
(N/A) HFCVD MCD 15 N/A 

Pearlitic grey 
cast iron 

GG25 DIN 
1691 

HS dry 
Turning 

Abrasion, 
diffusion, 
adhesion 
wear and 
diamond 
coating 

graphitizatio
n 

[85] 

WC–
6%Co 

Triangular 
inserts (TPGN 

11 03 04)  

Etching and 
SiC interlayer  of 

0.5 µm 
(SEM surface 

structure) 

HFCVD MCD 5.0-6.0 N/A Graphite rods Dry 
Turning 

Notch 
formation on 

the relief 
face  

[86] 

WC–
6%Co 

Square-shape 
inserts 

(SPG422) 

N/A 
(N/A) MWCVD NCD 30 N/A A 390 alloy 

(18 wt.% Si) 
Dry 

Turning 
Coating 
flaking  [87] 

WC 6–8% 
cobalt  

300 μm 
diameter, two-
flute end mills 

 

Etching 
(Changes in tool 

geometry) 
HFCVD Fine Grain 

Dispersed (FGD)  
0.5-1 and 
0.2-0.3 N/A 6061-T6 

aluminum 

Dry 
Micro 

Milling 

N/A due 
to 

Aluminum 
BUE 

[88] 

WC–
6%Co 

Tool inserts 
(TPG 110304)  

Etching 
(N/A) 

HFCVD 
and 

TMCVD 
MCD 5.0 ± 0.3  N/A ISO88 

graphite 
Dry 

Turning 

Flank wear, 
crater wear, 

and notching 
[89] 

WC-6 
wt.% Co 

Cutting inserts 
(TPGN 
160308) 

Heat treatment and 
etching 

HFCVD 
and 

TMCVD 
MCD 

23-25 ± 2 
(HFCVD) 

and 5.0 
(TMCVD) 

N/A 

Al–10% 
Al2O3-MMC 

(HFCVD) and 
graphite (ISO 

88) 
(TMCVD) 

Dry 
Turning Flank wear [90] 
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Table 3.4. (Continued) 

Hard-
metal 
grades 

(K10 and 
M10–30 

types, 6% 
Co) 

N/A 

Heat treatment and 
etching 

(Cutting edge 
surface) 

HFCVD MCD,  NCD, and 
Multi Layer 6.0-25 N/A 

(CFP) and Al-
Si-alloys with 

low Si-
content. 

Turning Flank wear [16] 

WC-
6wt.%Co Triangle inserts 

Chemical etching, 
microwave 

plasma-etching 
(N/A)  

HFCVD Rough and soft 
diamond coatings 10-15 Indentation 

SiC 
reinforced 
aluminum 

base 
composite 

Turning 
Flank wear 
and coating 

peeling 
[91] 

WC–Co K10 drills 

Microwave 
oxidation and 

etching 
(SEM surface 

structure) 

HFCVD MCD and NCD N/A N/A 

SiC particles 
reinforced 
aluminum 

matrix 
composite 

 

Dry 
Drilling 

Flank wear 
Normal 

mechanical 
abrasion and 
no peeling 

[92] 

WC-
6wt.%Co 

Triangular 
(TPGN 
160308)  
inserts  

Heat treatment and 
etching 

(SEM Surface 
structure) 

HFCVD MCD 27±3 μm N/A Al-20%SiC Dry 
Turning Flank wear [93] 
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After analyzing the information contained in Table 3.4, the following facts in 

regard to the correlation between the substrate characteristics, surface pretreatments, 

diamond synthesis, diamond adhesion, dry machining performance, and wear failure can 

be stated: 

• The most common substrate materials used are cemented carbides (WC-

Co) with cobalt contents of 6%. Another substrate material evaluated is 

Si3N4, which does not require additional surface pretreatments to enhance 

diamond adhesion and no surface characteristics are reported besides the 

seeding process required for the diamond deposition 

• Different tool geometries have been used during the dry machining 

operations; however, most of them correspond to square shaped cutting 

inserts and drills 

• Chemical etching is the surface pretreatment used in the majority of the 

experimental works. Only SiC interlayers have been evaluated in the 

adhesion improvement and dry machining performance of diamond coated 

tools. Heat treatments have also been used as a cobalt suppression 

mechanism on the tool surface 

• Hot filament chemical vapor deposition (HFCVD) is the synthesis method 

used in most of the experimental processes to deposit the diamond 

coatings 

•  Nanocrystalline diamond coatings have been the structural film 

characteristic mostly deposited during the last four years. Previously, most 

of the depositions correspond to microcrystalline diamond characteristics 
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• Different diamond film thicknesses have been evaluated with respect to 

the diamond coating performance during dry machining operations. Only 

one systematic experimental study has been conducted in order to analyze 

this effect with respect to the dry machining performance 

• Despite the many diamond film adhesion evaluation techniques discussed 

in the literature, only indentation and friction (ball-on-plate) tests have 

been directly compared with the dry machining performance results of the 

diamond coated tools by four of the experimental works 

• Diverse workpiece materials have been dry machined with the diamond 

coated tools including: Al-Si alloys, glass fiber reinforced polymers 

(GFRP), SiC-Al metal matrix composites (MMC), electric discharge 

machining (EDM) grade graphite, graphite, Al2O3-Al MMC, and carbon 

fiber reinforced polymers (CFRP). Pearlitic gray cast iron workpiece 

material has been also evaluated with poor machining behavior of the 

diamond coated tool 

• Dry drilling and dry turning have been the most evaluated cutting 

operations 

• Flank wear is the most common failure mechanism present at the diamond 

coated tools during the dry machining, however, other diamond coating 

failures have been identified such as film peeling, film breakage, coating 

delamination, crater depth wear (present in Si3N4 substrates), abrasion, 

diffusion and graphitization (present in pearlitic gray cast iron), and notch 

formation  
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CHAPTER 4. SURFACE PRETREATMENTS ANALYSIS ON CEMENTED 
CARBIDE CUTTING TOOLS 

 
 
 

4.1. Introduction 

The action of any surface pretreatment technique over a substrate material will 

produce a characteristic trace on both its superficial layer and subsurface integrity, which 

substantially differ from the bulk in terms of structural properties such as mechanical, 

thermal, electrical, and physical, energy condition, and adsorption activity [94]. 

The diamond coating surface roughness and the suppression of the cobalt 

migration in WC-Co pretreated substrates have been established as the main aspects to 

influence the cutting performance of CVD diamond coated tools in the machining of SiC 

reinforced aluminum base composites [91]. 

In addition to the synthesis growth requirements, the surface textures and 

subsurface characteristics have a direct impact on the subsequent diamond adhesive 

behavior [95]; hence, the final diamond coating performance strongly depends on the 

technological surface layers produced by the selected surface pretreatments and their 

consequential effects in the substrate surface/subsurface integrity, which ultimately 

represent the interfacial characteristics of the substrate-coating composite system. 
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Besides suppressing or halting the undesired catalytic effect of cobalt on the 

diamond growth, a mechanical interlocking effect between the substrate surface and the 

diamond film is fundamental to achieve an optimal adhesion of the coating. The 

interlocking mechanism is mainly due to the formation of embedded nucleation sites 

inside the surface grain interruptions at the microscopic level. Depending on their size, 

distribution, and orientation, the adhesion of the diamond film coating will be determined 

by the substrate mechanical strength, the resulting substrate-coating chemical bonding 

and frictional forces [96]. 

However, the characteristics of the aforementioned interruptions in terms of their 

dimensional magnitude, orientation, and consequential subsurface modifications on the 

substrate material have not been studied with respect to the dry machining performance 

of diamond coated tools as a manufacturing chain. 

The final roughness of the diamond coating deposited by HFCVD synthesis 

methods depends substantially on the original roughness of the pretreated substrate 

material [97]. This fact is even more critical when considering commercial cutting tools 

in their as-ground state as substrates for diamond deposition.  

The amount of surface/subsurface damage present in commercial tools in terms of 

grind lines, fragmented WC grains, and a Co binder phase redistributed at the surface 

[38], creates particular considerations to take into account during the understanding of 

any surface pretreatment method.  
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Additionally, the amount of cobalt removed out of the substrate when using 

chemical etching pretreatments, is characterized by a depletion band beginning at the 

surface toward the center in the bulk; normally, its thickness depends on the etching time. 

This condition creates uncertainties for chemically etched cemented carbides to be CVD 

diamond coated. One case is due to the possibility of cobalt flowing from the bulk to the 

surface during the diamond CVD synthesis process if the depletion band is not thick 

enough. The other case, considers an expected decrease in the fracture toughness of the 

carbide tool if this band is too thick. 

Moreover, the surface/subsurface characteristics of the interface vary substantially 

when considering an inter-diffusion and stress relaxation interlayer architectures 

deposited in the substrate to enhance the diamond adhesion. The interaction between the 

bottom layers with the substrate surface and the interaction between the top layers with 

the diamond coatings creates two distinct interfaces with particular behaviors depending 

on the substrate surface texture characteristics and the conditions for the diamond growth, 

respectively.  

With the aim to correlate the substrate surface/subsurface modifications in WC-

Co turning inserts as the result of chemical etchings and the deposition of a CrN/Cr 

interlayer as pretreatment methods, different aspects are evaluated during this chapter in 

terms of the resulting features at the substrate surface/subsurface and interfacial 

characteristics. 
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4.2. Experimental Conditions 

Commercial tungsten carbide - 6 wt% cobalt square positive angle turning inserts 

(WC-6%Co/SPG-422) were used as tool substrates for further microcrystalline diamond 

(MCD) coating depositions. Different surface pretreatments were selected in order to 

evaluate the two most commonly reported technical approaches to overcome the 

detrimental effect from the cobalt binder, including the cobalt surface removal by surface 

chemical etchings and the suppression of cobalt-carbon solubility effect by the pre-

deposition of an inter-diffusion barrier layer. 

 

4.2.1. Chemical Etchings 

Chemical etching methods involve the use of chemical agents during a specific 

amount of time in order to roughen the surface and suppress its cobalt binder effect 

[90,98,99]. The WC-Co inserts were first cleaned in an acetone ultrasonic bath for 10 

minutes, followed by 5 minutes in an ultrasonic rinse in methanol with the aim to remove 

any contamination from previous grinding processes. After that, samples were 

ultrasonically treated with Murakami’s solution (1:1:10 KOH + K3[Fe(CN)6] + H2O) for 

10 minutes and then rinsed with deionized water. In Method E-1, the Murakami’s step 

was followed by the immersion of the samples in an ultrasonic bath containing 10% 

HNO3 + 90% H2O2 for 60 seconds. Method E-2 corresponds to the same Murakami 

initial etching and further immersion in an ultrasonic bath containing 3 ml of H2SO4 and 

88 ml of H2O2 for 60 seconds. After all chemical etchings, samples were ultrasonically 

rinsed with deionized water and dried with nitrogen gas. 
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4.2.2. The CrN/Cr Cobalt Inter-Diffusion Barrier Interlayer 

As discussed previously, the deposition of a physical barrier layer prevents the 

inter-diffusion of carbon into the underlying cobalt binder phase and may also act as a 

stress relaxation layer reducing the thermal expansion coefficient mismatch between the 

diamond and the substrate material.  

In this research, as received WC-Co (6%) inserts were coated with an initial layer 

of CrN (1.5μm) followed by a top layer of Cr (1.5μm) using a commercial cathodic-arc 

Physical Vapor Deposition (PVD) system. Additional treatments after the interlayer 

deposition were applied to the PVD coated tool surfaces in order to improve the diamond 

film nucleation and interlocking with the substrate by creating a rougher surface.  

Method I-1 corresponds to an additional media blasting to the top Cr surface for 1 

minute using diamond particles (50μm) at a pressure of 40 psi. Method I-2 corresponds to 

an additional surface scratching process to the chromed surface during 60 minutes in an 

ultrasonic bath containing a solution of 2.4g diamond powders (50μm) dispersed in 50ml 

of methanol. 

 

4.3. Initial Surface Pretreatment Effects 

Initially, the effects of the surface pretreatments were evaluated in general in 

order to establish their overall effects in terms of the substrate surface modification and 

propose possible optimization methods. The surface/subsurface modification will be 
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evaluated later on in this chapter based upon the results of the initial pretreatment 

characteristics. 

The substrates surface roughness and morphology before and after each surface 

pretreatment were measured by a Vecco Wyko-NT9100 white-light interferometer and a 

Hitachi S-800 Scanning Electron Microscope. Cross sectioning of the substrates before 

and after each treatment was performed by dicing the inserts with a refrigerated diamond 

saw followed by metallographic preparation of the resulting surfaces mounted on 

conductive epoxy resin, grinded and polished using an automatic preparation Struers 

Prepmatic-2 system.  

Supplementary SEM analysis was conducted on metallographically-prepared 

samples to characterize the effect of each pretreatment in the WC-Co microstructure by 

immersing the cross sectioned samples during five minutes in a solution of Murakami 

reagent (10g K3Fe(CN)6 + 10g NaOH in 100mL H2O) in order to reveal the modified 

cemented carbide microstructure. All abovementioned surface pretreatments are 

summarized in Table 4.1. 
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Table 4.1. Surface modification pretreatments applied to the WC-Co(6%) turning inserts 

Surface Denomination Treatment Characteristics 
As-received (AG) Ultrasound cleaning in acetone and methanol 

Murakami (M) Ultrasound bath in (1:1:10 KOH + 
K3[Fe(CN)6] + H2O) 

Method E-1 Murakami + ultrasound bath in 10% HNO3 + 
90% H2O2 

Method E-2 Murakami + ultrasound bath in a solution of 
3 ml of H2SO4 and 88 ml of H2O2 

PVD coated (I-AG) Deposition of 1.5μm of CrN and 1.5µm of Cr 
(top) 

Method I-1 PVD coated + shoot peening with 50 µm 
grain size diamond powder 

Method I-2 PVD coated + wet scratching in a 50 µm 
grain size diamond slurry 

 

Figure 4.1 depicts the surface maps and roughness parameters obtained by white-

light interferometer, and corresponding to the surface of as received WC-Co (6%) 

commercial turning inserts (AG), the surface after Murakami treatment (M), methods E-

1, E-2, I-1 and I-2 respectively.  

Roughness parameters values such as Rz, Rt, Rp, and Ra were recorded and 

averaged from six measurements on different top surface points. The scan size is 

determined by the optical magnification of the system (50 X) in a resulting surface area 

of 126 x 94µm and containing 640 x 480 data points. These values were kept constant for 

all roughness measurements in order to decrease the systematic error in the resulting 

roughness parameter values [100]. 
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Figure 4.1. Surface maps obtained by white-light interferometry corresponding to as-
received WC-Co (6%) turning insert topography (AG), Murakami treated surface (M), 
and surface textures after treatment method E-1, method E-2, original PVD coated 
substrate (I-AG), method I-1, and method I-2, respectively 
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Surface map AG represents the as-ground original surface depicting the 

directional marks (feed marks) left by the grinding process on the surface of the tool. 

These feed marks confer to the surface an average roughness (Ra) of 0.16µm measured 

perpendicular to the feed marks across a length of 126 µm. Murakami (M) treated 

surfaces displayed an increased surface roughness parameter Ra of 0.24 µm with a partial 

removal of feed marks.  

Surface topography after treatment method E-1 reveals a uniform surface with a 

Ra value of 0.51µm, with a complete removal of feed marks. The resulting surface 

characteristics of Method E-2 show a partial removal of feed marks with a corresponding 

Ra value of 0.45µm.  

The effect of the top chromium media blasting and diamond scratching methods 

after the deposition of the initial PVD CrN/Cr interlayer are also characterized in Figure 

4.1. The initial PVD deposition process (I-AG) produced a surface that still displays 

features with a preferential direction resulting from the conformal PVD coating over the 

initial feed marks in the as-ground surface. Furthermore, other features resulting from the 

cathodic-arc PVD process (microdroplets), which will be discussed later, were observed. 

Consequently, the roughness value for the PVD top chromium interferometry surface 

map are considerably affected by the combined effect of these features, and are not 

suitable for a quantitative pretreatment comparison purpose.  

Method I-1 produced a uniform surface roughness with an Ra parameter of 

0.28µm, few visible feed marks (at a bigger surface area scale of 250 x 190 µm) and 

completely removes the microdroplets in a microscale, however, Method I-2 generates a 
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surface with an Ra value of 0.11µm, with less Cr microdroplets compared to the original 

PVD coating, and did not completely modify the top surface in terms of the initial as-

ground feed marks, with resulting roughness parameter values close to the original as 

ground surface characteristics as shown in Figure 4.2, which summarizes all surface 

roughness parameters for each surface denomination, including the maximum and 

minimum values with respect to the average. 

 

Figure 4.2. Roughness characteristics for each surface designation represented by the ten-
point height (Rz), maximum peak-to-valley height (Rt), highest peak (Rp), and 
arithmetical mean deviation (Ra) texture roughness parameters 
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Figures 4.3(a)-(d) are SEM micrographs of the substrate top surfaces and their 

cross sections after metallographic preparation. In Figure 4.3a, the feed marks on the 

surface of the tool are depicted and the microstructure (insert) of the cemented carbide 

corresponds to the WC grains with a diameter of 1.4µm in average embedded in a Co 

matrix. Figure 4.3b shows the surface modification after pretreatment E-1 with a Co 

removal depth of approximately 9.5µm along the cross section of the tool. The surface 

modification after pretreatment E-2 is shown in Figure 4.3c, which shows the cobalt 

binder depletion zone of ~ 8.0µm down into the cross section. It can be seen that both 

pretreatments, method E-1 and method E-2, modify the surface at the micro-scale in 

terms of eliminating the directional features from the as-received sample, which are 

detrimental to the final adhesion of the diamond coating due the resulting debonding of 

the film along the preferential direction of the feed marks.  

The microstructure morphology of chemical etched samples depicts the resulting 

cobalt binder removal, which produces isolated WC grains in the cross section of the tool 

at different Co removal rates. This effect corresponds to the initial effect of Murakami’s 

reagent, which attacks the WC grains, thus modifying the initial surface, and the final 

etching of the acid (for both etching methods), which oxidizes the cobalt binder to 

soluble Co2+ compounds, consequently washed out during the ultrasonication [101]. 

The CrN/Cr interlayer surface deposited on the top of the as received WC-Co 

inserts, including its cross section, is shown in Figure 4.3d, which depicts a uniform 

coating with the presence of Cr particles (microdroplets) entrained at the surface, this is 

typical for a cathodic arc-PVD process with heights ranging from 1.2 to 4.5 µm 
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(interferometer measurement) and diameters between 1.5 and 3.0 µm, approximately. 

The cross section (inset) shows the conformal deposition and morphology of both, CrN 

and Cr interlayers on the top of the WC-Co substrate. 

 

Figure 4.3. (a) SEM micrograph showing the finishing feed-marks at the surface of WC-
Co (6%) as received turning inserts and the WC grains distribution (inset) in the Co 
binder. (b) SEM micrograph at the surface of substrates after E-1 pretreatment including 
the Co depletion layer (inset) in the cross section. (c) SEM micrograph at the surface of 
substrates after E-2 pretreatment including the Co depletion layer (inset) in the cross 
section. (d) SEM micrograph at the surface of substrates after the CrN/Cr PVD deposition 
and the cross section (inset) showing the layer interfaces and morphology 
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4.4. Surface and Subsurface Integrity of Modified Surface Pretreatments 

After analyzing the initial surface pretreatment effects on the surface 

characteristics of pretreated WC-Co turning inserts, new substrate pretreatments listed in 

Table 4.2 were conducted in order to obtain systematically modified surface textures and 

ultimately correlate them with the adhesion and dry machining performance of diamond 

coated tools, analyzed in Chapter 5 and Chapter 6, respectively.  

The new sets of chemical pretreatments described in Table 4.2 are aimed to 

produce different subsurface characteristics in terms of the effect of the initial Murakami 

treatment on the resulting tool surface texture, and producing different thicknesses in the 

cobalt depletion band, both by changing their immersion time in their respective chemical 

solutions.  

It has been reported that the effect of the Murakami reagent is to attack the WC 

grains present at the substrate surface, consequently roughing the surface and exposing 

the cobalt binder [90]. The modified surface pretreatments M1 to M4 were tailored to 

analyze the effect of the Murakami reagent in the reduction of the surface damage present 

in the as ground (AG) by increasing the reaction time.  
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Table 4.2. Modified surface pretreatments applied to the WC-Co (6%) turning inserts 

Surface Denomination Pretreatment Characteristics 

Method - M1 
Ultrasound bath in Murakami 

reagent(1:1:10 KOH + K3[Fe(CN)6] + 
H2O) for 5 min 

Method - M2 
Ultrasound bath in Murakami reagent 

(1:1:10 KOH + K3[Fe(CN)6] + H2O) for 
10 min 

Method - M3 
Ultrasound bath in Murakami reagent 

(1:1:10 KOH + K3[Fe(CN)6] + H2O) for 
20 min 

Method - M4 
Ultrasound bath in Murakami reagent 

(1:1:10 KOH + K3[Fe(CN)6] + H2O) for 
30 min 

Method – E-1-1 
Murakami ultrasound bath for 10 minutes 
+ immersion in 10% HNO3 + ultrasound 

bath in 90% H2O2 for 15 seconds 

Method – E-1-2 
Murakami ultrasound bath 10 minutes + 

ultrasound bath in 10% HNO3 + 90% 
H2O2 for 30 seconds 

Method – E-1-3 
Murakami ultrasound bath for 10 minutes 
+ ultrasound bath in 10% HNO3 + 90% 

H2O2 for 60 seconds 

Method – E-1-4 
Murakami ultrasound bath for 10 minutes 
+ ultrasound bath in 10% HNO3 + 90% 

H2O2 for 120 seconds 

Method – E-2-1 
Murakami ultrasound bath for 10 minutes 
+ ultrasound bath in a solution of 3 ml of 
H2SO4 and 88 ml of H2O2 for 15 seconds 

Method – E-2-2 
Murakami ultrasound bath for 10 minutes 
+ ultrasound bath in a solution of 3 ml of 
H2SO4 and 88 ml of H2O2 for 30 seconds 

Method – E-2-3 
Murakami ultrasound bath for 10 minutes 
+ ultrasound bath in a solution of 3 ml of 
H2SO4 and 88 ml of H2O2 for 60 seconds 

Method – E-2-1 

Murakami ultrasound bath for 10 minutes 
+ ultrasound bath in a solution of 3 ml of 

H2SO4 and 88 ml of H2O2 for 120 
seconds 
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In methods E-1-1 to E-1-4 and E-2-1 to E-2-4, the variations are characterized by 

changing the chemical nature and reaction time necessary to oxidize the exposed cobalt 

binder at the surface, consequently producing different subsurface characteristics in terms 

of the cobalt depletion zone and WC grain distribution. 

 

4.4.1. The As-Ground WC-Co Tool Surface 

As mentioned earlier, the surface of the WC-Co (6%) turning inserts (AG sample) 

used during the present research is characterized by the presence of feed marks resulting 

from the final grinding manufacturing process to achieve the desired geometry. This 

amount of surface damage needs to be minimized in order to produce a homogeneous 

surface free of preferential features which may have a detrimental effect on the diamond 

adhesion.  

Figures 4.4(a)-(c) display SEM micrographs containing additional information 

about the features of surface AG. Figure 4.4(a) depicts the direction of the feed marks 

with respect to the edge of the cutting tip of the insert. Figure 4.4(b) corresponds to the 

detail of the amount of surface damage in the sample of AG represented by the smearing 

of the cobalt binder (white areas) at the surface and its detachment at some points, 

creating voids and craters aligned with the direction of the feed marks. This superficial 

texture differed in some cases from one sample batch to another, suggesting that even 

when the tool insert geometry reference remains the same (SPG 422), the surface texture 

can be different as seen in Figure 4.4(c), which is an excessive grinding damage effect at 
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the surface, that definitely has to be minimized by the surface treatments prior to the 

diamond deposition. 

 

(a) 

 

 

(b) 

Figure 4.4. SEM micrograph corresponding to the surface of the as-ground WC-Co (6%) 
commercial inserts depicting: a) the orientation with respect to the cutting tip of the tool, 
b) the amount of surface damage and redistribution of the Co binder phase, and c) an 
excessive surface damage present in some batches, which need to be minimized before 
the diamond deposition to maximize the coating adhesion 
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(c) 

Figure 4.4. (Continued) 

 

The surface texture characteristics of the sample AG were characterized by white 

light optical interferometry, and the corresponding results are shown in Figure 4.5(a) and 

4.5(b). The feed marks confer to the surface an average roughness (Ra) of 0.128 µm 

measured perpendicular to the feed marks in a surface area of 140 by 105 µm as shown in 

Figure 4.5(a). From a surface profile analysis, as shown in Figure 4.5(b), it can be 

estimated that the features have an average maximum peak to valley Rt value of 1.19 µm. 
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(a) 

 

 

(b) 

Figure 4.5. (a) The surface texture of sample AG detailing the overall surface 
representation and the area of analysis. The surface texture parameters were measured 
and averaged at three different analysis areas. (b) An example of a surface profile used to 
determine the roughness parameter values 
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An additional interferometry analysis done in sample surface AG by using a 

bigger surface area corresponding to 1.4 x 1.0 mm (5x objective lens) and shown in 

Figure 4.6, reveals the more spaced features observed in the SEM micrographs on Figure 

4.5(a)-(c), corresponding to a separation of 231.02 µm in and a maximum peak to valley 

Rt value of 1.45 µm. 

 

 

Figure 4.6. Surface profile of sample AG analyzed in a surface area of 1.4 x 1.0 mm 

 

4.4.2. The Effect of the Murakami Treatment on the Tool Surface 

After characterizing the surface texture present in the as ground samples, the 

surface pretreatment methods described in Table 4.2 as M1, M2, M3, and M4 were 

applied. Separate inserts were independently immersed in 20 ml of the Murakami 

solution and then agitated in an ultrasonic bath during the corresponding period of time 

for each method.  
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Figures 4.7(a)-(d) correspond to SEM images of the insert surface after each 

Murakami pretreatment. The transition from a preferential surface texture to a more 

uniform surface texture can be seen as the result of a decrease in the height of the feed 

mark peaks. However, this reduction is accompanied by the exposure of surface void 

defects aligned in the direction of the feed marks, possibly caused by the detachment of 

WC grains out of the cobalt matrix due to the etching action of the Murakami reagent. 

This hypothesis was confirmed by the presence of WC powder precipitated at the bottom 

of the reaction container, which increased in weight along with the etching time. A 

detailed SEM image of these voids on the surface of sample M4 is shown in Figure 4.8. 

The alignment of the voids in the same direction of the feed marks suggest that the 

mechanism involved in the decreasing of the peaks heights is attributed to a detachment 

of weakly bonded WC grains affected by the finishing grinding action of the inserts in a 

non uniform cobalt binder which has been smeared on the surface. 

 

(a) 

Figure 4.7. SEM images corresponding to the surface of tool substrates after pretreated in 
method (a) M1, (b) M2, (c) M3, and (d) M4  
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(b) 

 

 

(c) 

Figure 4.7. (Continued)  
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(d) 

Figure 4.7. (Continued)  

 

 

Figure 4.8. SEM images corresponding to the surface of tool of sample M4 depicting the 
voids at the surface corresponding to a cluster of WC grains detached from the WC-Co 
surface by the etching action of the chemical 
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Surface texture maps of samples M1, M2, M3, and M4 are shown in Figure 4.9 

and a summary of their corresponding roughness parameter values is included in Figure 

4.10.  

 

Figure 4.9. Surface textures of different Murakami surface pretreatments compared with 
the initial as-ground surface. The Z scale bar for all tests is included 
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Figure 4.10. Roughness characteristics of different Murakami surface pretreatments 
represented by the arithmetical mean deviation (Ra), root-mean-square (rms) roughness 
(Rq), maximum peak-to-valley height (Rt), and highest peak (Rp), texture roughness 
parameters 

 

As found from an analysis of the abovementioned data, the preferential surface 

texture of the as ground sample is reduced by the Murakami pretreatments by an increase 

in the surface roughness until method M3. The surface corresponding to method M4 is 

characterized by a smoother surface in both the surface texture and roughness values; 

however, the degree of roughness present at surface M4 is greater than the surface AG, so 

the decrease in the roughness parameters Ra and Rq values in sample M4 are mainly due 

to the reduction of the higher preferential features, however, directional features still 
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appeared at higher surface areas as shown in Figure 4.7(d). The Rt and Rp values remain 

almost constant for surfaces M2, M3, and M4, in accordance to the chemical etching 

action (not mechanical polishing) in all surface interruptions, including the valleys. 

 

4.4.3. The Effect of the Cobalt Removal from the Surface 

The WC-Co turning inserts were pretreated with two types of chemicals during 

four different periods of time in order to remove the cobalt exposed at their surface, after 

being roughed with the Murakami reagent, as shown in Table 4.2. The time established 

for the initial Murakami pretreatment in this particular analysis corresponds to Method 

M2, established as the average contribution of the experimental levels from M1 to M4 to 

characterize the effect of the second etching step without having the smoother surface, or 

the one with the highest roughness value. 

The effect of the Co removal pretreatments is analyzed with respect to the surface 

and subsurface integrity of the tools in terms of the surface textures produced and their 

corresponding cobalt depletion layer. The surface texture integrity is evaluated following 

the same experimental conditions during the Murakami pretreatment analysis. The 

subsurface modification was analyzed by a characterization of the tool substrate cross 

sections using metallographic preparation and SEM imaging. Surface texture maps of 

samples E-1-1, E-1-2, E-1-3, E-1-4, and their initial surface M2 are shown in Figure 4.11 

and similarly for samples E-2-1, E-2-2, E-2-3, and E-2-4 in Figure 4.12. The summary of 

all surface roughness parameters for all variations in E-1 and E-2 method is shown in 

Figure 4.13. 
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Figure 4.11. Surface textures corresponding to pretreatments E-1-1, E-1-2, E-1-3, and E-
1-4, and compared with their initial surface corresponding to the method M2. The Z scale 
bar for all tests is included 
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Figure 4.12. Surface textures corresponding to pretreatments E-2-1, E-2-2, E-2-3, and E-
2-4, and compared with their initial surface corresponding to the method M2. The Z scale 
bar for all tests is included 
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Figure 4.13. Average roughness characteristics of different variations in methods E-1 and 
E-2 by the arithmetical mean deviation (Ra), root-mean-square (rms) roughness (Rq), 
maximum peak-to-valley height (Rt), and highest peak (Rp), texture roughness parameters 
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It can be seen from Figures 4.11 and Figure 4.12 that after the initial Murakami 

pretreatment M2, both chemical surface pretreatments E-1 and E-2 provide an additional 

surface texture reconstruction to the substrate, however, the amount of reconstruction 

differs from the reaction time on each chemical, being more notorious after 30 seconds of 

etching in method E-1 and sixty seconds of etching in method E-2.  

There is an additional increase in all the substrate surface roughness parameters 

after the Murakami treatment for both methods during short etching immersion times and 

no significant change of Ra and Rq after 15 seconds of etching, as seen in Figure 4.13. 

Method E-1 displays a slight decrease in the roughness parameters Rt and Rp after fifteen 

seconds of etching; no major changes were observed in these parameters for method E-2. 

The subsurface characteristics of the WC-Co turning inserts were evaluated in 

terms of their integrity resulting after both methods E-1 and E-2 by measuring the cobalt 

depletion band after methalographic preparation of the substrate modified cross sections. 

Figures 4.14 (a)-(d) are SEM micrographs of the substrate cross sections after 

metallographic preparation and corresponding to methods E-1-2, E-1-4, E-2-2, and E-2-4, 

respectively. The effect of the second etching step in the cobalt binder removal is clearly 

depicted by the formation of the depletion band from the surface. It was found that the 

thickness of the band is relatively the same for both surface pretreatment methods with a 

value of approximately 10 µm for methods E-1-2 and E-2-2 in Figures 4.14(a) and 

4.14(c), respectively, and a value of approximately 14µm for methods E-1-4 and E-2-4 in 

Figures 4.14(b) and 4.14(d), respectively. These values demonstrated that the cobalt 

depletion band corresponding to a period of 120 seconds is not double the value 
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corresponding to sixty seconds; however, it was found a lesser amount of cobalt binder 

remaining  over the WC grains in method E-2-4 than in method E-1-4 when compared to 

Figures 4.14(d) with Figure 4.14(b), respectively. This can be visualized in detail at the 

interface between the cobalt depletion zone and the original cemented carbide structure as 

depicted in Figure 4.15(a) and 4.15(b) corresponding to methods E-1-4 and E-2-4, 

respectively. 

 

 

Figure 4.14. SEM micrographs corresponding to the subsurface integrity after the 
pretreatment methods (a) E-1-2, (b) E-1-4, (c) E-2-2, and (d) E-2-4 on the M treated 
sample, where the corresponding thickness of the cobalt depletion band can be 
distinguished 
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(a) 

 

 

(b) 

Figure 4.15. SEM micrographs corresponding to the subsurface integrity after the 
pretreatment methods (a) E-1-4 and (b) E-2-4 on the as-ground WC-Co samples, 
depicting the interface between the cobalt depletion band and the non etched cemented 
carbide structure 

 



www.manaraa.com

111 
 

A detailed analysis of the surfaces resulting from SEM images of methods E-1 

and E-2 at different etching immersion times revealed no differences for the same method 

and different etching times and small superficial differences between methods E-1 and E-

2 as shown in Figure 4.16. A less uniform surface texture at a smaller area and a higher 

amount of pits at the surface is noted for method E-2. The latter aggresses with the 

observations at the subsurface damage characterized by a larger amount of voids in 

between the WC grains. 

 

Figure 4.16. SEM micrographs corresponding to the surface morphology after the 
pretreatment methods (a) E-1-2, (b) E-1-4, (c) E-2-2, and (d) E-2-4 on the M treated 
sample, where a small difference in surface roughness can be distinguished between both 
pretreatment methods  

 



www.manaraa.com

112 
 

4.4.4. The Interface Between the CrN/Cr Interlayer and the WC-Co Substrate 

The predeposition of the CrN/Cr interlayer prior the CVD diamond synthesis 

creates an additional interface with the substrate material, which is related to the surface 

condition of the substrate. In this research, the PVD-CrN/Cr was deposited on the WC-

Co turning inserts without any additional surface pretreatment corresponding to the 

characteristics of the sample AG.  

A cross section of a sample I-AG, according to Table 4.1, was prepared for 

metallographic analysis using the same conditions than the chemical etched cross 

sections. Figures 14.17(a) and 14.17(b) show the resulting characteristics of the interface 

between the CrN/Cr interlayer and the as-ground WC-Co turning insert. Figure 4.17(a) 

depicts the interface between the interlayer and the carbide surface, where a non complete 

contact between the bottom CrN layer and the substrate is observed. The CrN layer sits 

on the top of the substrate surface irregularities, producing a conformal coating to these, 

as shown in the texture map corresponding to the sample surface I-AG in Figure 4.1. 

Additionally, it was found that the thickness of the interlayer is not uniform, ranging from 

2 – 3 µm in total. 

A detailed morphology of the interface between the CrN layer and the WC-Co 

substrate is shown in Figure 4.17(b), depicting the WC grains and the Co binder at the 

substrate, and the non contact regions between the interlayer and the as-ground surface. 
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(a) 

 

 

(b) 

Figure 4.17. SEM micrographs corresponding to the subsurface integrity after the 
deposition of the CrN/Cr interlayer on the WC-Co as-ground samples 
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CHAPTER 5. DIAMOND DEPOSITION AND CHARACTERIZATION OF 
PRETREATED WC-CO SUBSTRATES 

 
 
 

5.1. Introduction 

In this chapter, diamond coatings were deposited on the pretreated surfaces from 

the methods listed previously in Table 4.1 and Table 4.2. It is expected that the 

differences in the surface texture features obtained from the surface pretreatment methods 

provide different structural and morphology characteristics to the deposited diamond 

coatings. These differences will certainly have an impact on the fundamental adhesion of 

the coating and the resulting machining performance during the dry machining 

operations. 

The results presented in this chapter will evaluate the properties of the diamond 

films deposited on the pretreated WC-Co turning inserts in terms of the adhesion of the 

coating and lately will provide an estimation of the resulting machining performance of 

the coated tools, discussed in Chapter 6. Additionally, the effects produced by the surface 

and subsurface integrity present at different variations of chemical pretreatment methods 

will be evaluated as well. 

One of the big uncertainties is related in the use of Rockwell indentations as an 

adhesion evaluation technique in diamond coatings ranging from 25 to 30 µm, and if the 

failure mechanism can be extended to the wear failure mechanism experienced by CVD 
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diamond coated cutting tools under dry machining conditions. There are several studies 

including contradictory results in terms of the most appropriate method to determine the 

diamond adhesion properties when deposited on cemented carbide tools. This research 

will provide a new insight in determining a practical correlation between a classical 

indentation technique method and the wear failure under dry machining conditions for a 

particular manufacturing chain featured by high silicon aluminum alloy workpiece 

materials. 

Besides traditional scratch test and indentation methods [102-104], diamond 

adhesion has been evaluated by other laboratory methods that promote the coating wear 

by: 

• A pin-on-disc tribometer friction device composed with a WC pin coated 

by a diamond layer acting against a XC30 steel disc [105]  

• An erosion wear test carried out by using a high velocity air-sand flow 

(340 ms-1) at an impact angle of 90° for the impingement of diamond 

coatings deposited in a WC substrate [106] 

• Loading a projected diamond coating on the edge of WC-Co substrates as 

the result of a grinding a lapping process on the insert that produces a 

diamond film projection on the edge due to the differences in hardness 

between the coating and the substrate [107] 

• A cavitation erosion equipment produced by modifying an ultrasonic 

device according to ASTM G32-92 composed by a high frequency 
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sonotrode that cause a cavitation bubble field on the top of the coating in 

evaluation [108-110] 

• A sand abrasion wear device composed by a rotating rubber wheel, which 

is fed with a constant flow of sand particles that are introduced in between 

the wheel and the surface of the sample in order to abrade the sample 

diamond coating when a force is applied to the sample holder against the 

wheel [111] 

In this research, we have used a combination of Rockwell indentations and 

Raman spectroscopy to evaluate the adhesion and stress field of the diamond coatings 

deposited on the pretreated substrates. Rockwell indentations are useful in determining 

the diamond adhesion by evaluating the effects of the interface between the coating and 

the substrate. The large loads produced by the indenter will be enough to promote the 

growth of both interfacial and cohesive crack in the substrate/coating system that can be 

associated with the surface/subsurface integrity present in the substrate.  

The determination of a critical load is also possible when doing successive loads 

at different levels that can be correlated with the delamination characteristics of the 

coating. However, Rockwell indentation is not a test that can be applied for repetitive 

quality control measurements due to the degradation of the diamond indenter tip after a 

number of tests and the possibility of a substrate rupture if the test is conducted near the 

cutting edge of the tool [109]. 

Raman spectroscopy can be useful in determining the structural characteristics of 

thin diamond coatings deposited on surface modified substrates when techniques such as 
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the radius of curvature method in conjunction with the Stoney equation [112] and x-ray 

diffraction grazing angle [113], are not possible to use due to the difficulties in obtaining 

reliable values from thick diamond coatings deposited on geometrically complex 

substrates. Furthermore, the scratch test method is limited by the geometry of the 

scratching indenter in relation to the diamond coating thickness, which is more 

appropriate to use in thin diamond films. 

 

5.2. Experimental Conditions 

Commercial diamond films were synthesized by a sp3 M650 Hot Filament CVD 

system using hydrogen and methane as gas precursors at a pressure of ~ 40 Torr, a 

substrate temperature of ~ 850°C, and forming a continuous microcrystalline diamond 

film of approximately 25µm deposited on the pretreated turning inserts. The diamond 

surface characteristics were measured by white-light interferometer and SEM analysis.  

X-ray diffraction (XRD) patterns were recorded before and after the diamond 

deposition by a Bruker-AXS D8 Discover diffractometer operated at 40 kV and 40 mA. 

Data were collected at 2θ between 25° - 85°, using an integration time of 7 seconds per 

step and a step size 2θ of 0.01°. 

Raman spectroscopy of diamond coated-pretreated tools was performed using a 

Renishaw 1000 Raman spectrometer with an Argon laser at a wavelength of 514.5 nm, 

and a laser spot size of 1 µm at a power of 25 mW.  
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Rockwell C indentations were conducted by a Wilson/Rockwell Hardness Tester 

(Series 500) to evaluate the diamond coating adhesion at different load levels. Resulting 

diamond delaminations from the center of the indentation zone were measured in all 

samples by using a Keyence VHX-500 digital microscope and fracture patterns were 

analyzed by SEM.  

Film compositions in the indentation zone were determined by electron probe 

microanalysis (EPMA) with a Cameca Instruments Model SX100 Electron Probe. 

Electron beam conditions were typically 15 kV and 40 nA during the analysis. 

 

5.3. The Diamond Coated Surfaces after the Initial Surface Pretreatments 

Diamond has been deposited on the different surface modified substrates after the 

initial surface pretreatments according to Table 4.1 with a coating thickness of 

approximately 25 µm. It was observed that diamond coatings on the samples 

corresponding to method I-2 delaminated from the substrate right after the deposition.  

No after-growth diamond delamination was observed for samples E-1, E-2, and I-1, and 

their surface characteristics in SEM micrographs are depicted in Figure 5.1. Diamond 

surface corresponding to pretreatment method E-1 shows a continuous diamond film with 

well defined polyedrical crystal facets due to the <100>{111} texture surface, grains of ~ 

2 – 4 µm in size with many distributed small diamond crystallites, and averaged 

roughness parameters Ra of 0.50µm measured by optical interferometry. The surface 

characteristics of the diamond coatings on substrates from method E-2 reveal a smaller 
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diamond grain size ~ 1 – 2 µm, sub-micron facetted crystals, and an increase of non-

diamond carbon phases, with resulting roughness parameter Ra of 0.38 µm.  

 

Figure 5.1. Morphology (SEM) of HFCVD grown diamond coatings deposited on 
surfaces pretreated samples corresponding to methods E-1, E-2, and I-1 
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Diamond coatings on samples I-1 consist of a combination of small crystal facets 

in ball-like agglomerated deposits, a crystal size of ~ 1 µm, and roughness parameter 

value Ra of 0.31 µm.  

A comparison between the surface morphology and roughness parameters of 

coated samples from methods E-1, E-2 and I-1 confirms that the final roughness and 

morphology of the diamond coating are correlated to the initial roughness and 

characteristics of the substrate. The higher Rz value (aerial surface data corresponding to 

the average absolute value of the five highest peaks and the five lowest valleys) obtained 

in coated samples E-2 and I-1 with respect to sample E-1, confirms that diamond coatings 

deposited in pretreated surfaces under methods E-2 and I-1contain partial surface features 

related to the original feed marks of the as-ground (AG) sample, and also visible in the 

interferometry results of diamond coated surface texture maps. 

Figure 5.2 shows the XRD patterns of as-ground WC-Co (6%) samples (AG) 

prior to diamond deposition, diamond coated sample after method E-1, diamond coated 

sample after method E-2, PVD CrN/Cr coated sample (I-AG), and diamond coated 

sample after method I-1. 

These XRD patterns present the significant peak contribution of the WC 

(hexagonal) {101} reflection with a characteristic high intensity peak at 2θ – 48.2° which 

overlaps with the α-cobalt (hexagonal) peak normally present at ~  2θ – 47.0°, ({101} 

reflection as well) due to the scattering efficiency of W compared to that of cobalt  for a 

6% composition [31]. However, Co peaks corresponding to the {111} and {101} 

reflections can be distinguished at 2θ – 44.4° and 2θ – 76.9°, respectively.  
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Figure 5.2. XRD patterns of as-ground WC-Co (6%) samples (AG) prior to diamond 
deposition, diamond coated sample after method E-1, diamond coated sample after 
method E-2, PVD CrN/Cr coated sample (I-AG), and diamond coated sample after 
method I-1 
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After the deposition on samples E-1 and E-2, a diamond peak corresponding to a 

{111} reflection is present at 2θ – 43.85° and the {220} diamond crystallization is 

present at 2θ – 75.35°, which might overlap with the WC peak at 2θ – 75.2° distinguished 

in sample AG. The XRD spectrum of sample I-AG shows broad peaks attributable to 

chromium nitride at 2θ – 38.2°, 44.4°, 64.65°, 77.65°, and 2θ – 42.65° corresponding to 

the chromium. Diamond coated samples after pretreatment method I-1 show XRD 

patterns with additional peaks representing Cr3C2 and Cr7C3, suggesting that intermediate 

chromium carbide compounds are formed during the diamond deposition. 

Raman spectra of diamond films deposited onto the three aforementioned 

pretreated samples are shown in Figure 5.3. The Raman spectrum of MCD samples E-1, 

E-2, and I-1 show sharp diamond peaks centered at 1335.1, 1336.6, and 1333.5 cm-1, 

respectively, and shifted of about 2.7 cm-1, 4.2 cm-1, and 1.1 cm-1 with respect to natural 

diamond (1332.4 cm-1 at atmospheric pressure and 25°C), which correspond to biaxial 

residual compressive stresses of 2.91, 4.53, and 1.19 GPa, respectively [114]. Thermal 

stresses are expected to be the same due to the uniform diamond deposition temperature 

by the use of a substrate heater and a constant relative position of the samples with 

respect to the filaments during the HFCVD deposition batch; hence the residual stresses 

present in the samples may be solely attributed to the intrinsic stresses induced during the 

growth phase, which are correlated to the final morphology of the diamond coating as 

shown in the SEM micrographs in Figure 5.1. Furthermore, the stress relief effect of the 

CrN/Cr interlayer can be observed from the biaxial compressive stress values. 
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Figure 5.3. The Raman spectrum of samples E-1, E-2, and I-1 after diamond deposition 

 

Diamond coating adhesions were evaluated in terms of the lateral crack lengths 

resulting from discrete indentations levels at 45, 60, 100, and 150 Kg. Three indentations 

were performed at each level to ensure a delamination in the films, and ten crack length 

measurements per indentation were recorded for the analysis. When the indentation force 

is sufficiently high, lateral cracks are initiated and propagate between the coatings and the 

substrate. Figure 5.4 shows the average lateral crack lengths versus the indentation load 

for diamond coated samples after pretreatment methods E-1, E-2, and I-1. It can be seen 

that crack lengths are higher for sample E-1; however no diamond delamination and no 

white marks surrounding the indentation spots were observed at load levels of 45 and 60 

Kg.  
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Figure 5.4. The lateral crack lengths present in diamond coated samples E-1, E-2, and I-1, 
resulting from discrete indentations levels at 45, 60, 100, and 150 Kg 

 

Likewise, no delamination was observed for sample E-2 at 45 Kg. In contrast, 

delamination was observed at all indentation load levels for sample I-1, which displays 

similar crack length values with respect to sample E-2 at 60 and 100 Kg. The relative 

error (with respect to the average) is different for all samples at each discrete indentation 

force, i.e ~10% for sample E-1 at 150 Kg, 7% for sample E-2 at 60 Kg, and 15% for 

sample I-1 at 45 Kg. Moreover, no fracture or delamination was observed at some 

indentation loads for all samples when white circular marks appear at the diamond 

surface, which suggest that the coating was still not adherent, and the crack energy was 

not sufficient enough to promote a complete delamination; so care must be taken at the 

moment of measuring the delamination crack lengths in order to consider the previous 

aspects. Under these circumstances, resulting from different surface pretreatments effects, 
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it may not be appropriate to make a numerical comparison of the interfacial toughness of 

the diamond coatings based upon the slope obtained from the plots in Figure 5.4, which is 

considered proportional to 1/Gc, where Gc is the critical strain energy release rate for 

crack propagation. Figure 5.5 shows the backscattering SEM micrographs (left column) 

of samples E-1, E-2, and I-1, depicting the white spallation area of the diamond coatings 

and the lateral cracks when an indentation load of 100 Kg was applied to all samples. The 

spallation area was analyzed by EPMA, and W and C Ka x-ray mappings which are 

shown in Figure 5.5 for samples E-1 and E-2, whereas Cr and C maps are depicted for 

sample I-1 at the center and right columns, respectively.  

Diamond coating features can be distinguished from the C maps, where ball-like 

agglomerates are present in sample I-1, feed marks in sample E-2, and a uniform 

diamond surface in sample E-1. It can also be observed that the diamond delamination for 

samples E-1 and E-2 occurred from the Co free WC substrate whereas the diamond 

delamination for sample I-1 occurred at the diamond/interlayer, which suggest that the 

adhesion of the interlayer and the substrate is stronger than the adhesion of the interlayer 

and the diamond coating during the indentation. The semi-quantitative composition 

analysis on the peeled surface in sample I-1displays 77 wt% of Cr with less than 1% of 

W and Co. This suggests that the flaking of the diamond coating may have occurred 

mainly at the diamond/CrN interface. Some exposed WC-Co areas after delamination are 

observed in sample I-1 (blue area) surrounding the indentation where the level of stress is 

higher. 
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Figure 5.5. Backscattering SEM micrographs (left column) and W, Cr, and C Ka x-ray 
mappings (center and right columns) for samples E-1, E-2, and I-1 

 

 

 

 

 



www.manaraa.com

127 
 

5.4. The Diamond Coated Surfaces after the Modified Surface Pretreatments 

Diamond coatings with a coating thickness of approximately 30 µm have been 

deposited on the different surface modified substrates after the initial surface 

pretreatments E-1-1, E-1-2, E-1-3, E-1-4, E-2-1, E-2-2, E-2-3, and E-2-4 according to 

Table 4.2. 

The surface roughness values Ra and Rq after the diamond deposition from all 

samples are summarized in Table 5.1. These values correspond to aerial roughness values 

measured in a surface area of 140 x 105 µm, and averaged from four different 

interferometry measurements at each sample surface. The aerial values were used for 

comparison due to a predominant homogeneous surface present at the top of the diamond 

coatings differing from the preferential features observed in some surface textures of the 

pretreated surfaces after the diamond deposition.  

 

Table 5.1. Average roughness parameters Ra and Rq for diamond coated samples on 
surface pretreated methods E-1 and E-2 with respect to the chemical etching time 

Roughness 

Parameter 

Method E-1 Method E-2 

E-1-1 E-1-2 E-1-3 E-1-4 E-2-1 E-2-2 E-2-3 E-2-4 

Ra (µm) 0.61 0.63 0.64 0.63 0.44 0.46 0.46 0.47 

Rq (µm) 0.78 0.80 0.83 0.82 0.58 0.62 0.60 0.61 

 

It can be seen in Table 5.1 that there is no significant statistical difference in the 

roughness parameter values with respect to the etching time for one single method. 
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However, Method E-1 produces a rougher diamond surface than method E-2, with an 

approximately a 200 nm increase in both Ra and Rq values. This difference between 

method E-1 and E-2 can be seen in the texture maps in Figure 5.6 may be attributed to a 

higher diamond nucleation density in method E-2 as the result of a rougher pretreated 

surface at the submicron scale due to a higher amount of pits at the surface, as discussed 

in Chapter 4. At this point, method E-2 produces a smoother diamond surface than 

method E-1, but with the presence of higher preferential texture features at the interface 

for short etching immersion periods.  

A new set of adhesion evaluation tests were conducted in the diamond coatings 

deposited on the modified surface pretreatment methods by successive indentations at the 

same previous loads but differing in the way of quantifying the diamond peeling failure. 

In this latter case, attention was focused mostly in characterizing the delamination 

mechanism for each load in terms of the crack morphology and propagation. 
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Figure 5.6. Surface texture maps corresponding to the diamond coated samples after 
surface pretreatments E-1-2, E-1-4, E-2-2, and E-2-4, where a characteristic surface is 
appreciated for each method with no dependence in the surface pretreatment etching time 

 

The diamond crystal structures corresponding to the surfaces depicted in Figure 

5.6 are characterized by SEM and shown in Figure 5.7. These images revealed no 

significant differences in the diamond crystal grain sizes for a pretreated surface with one 

particular method and minor differences in between both pretreatments as shown in Table 

5.1 and Figure 5.6. 
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Figure 5.7. SEM micrographs corresponding to the diamond surface morphology of the 
coated samples (a) E-1-2, (b) E-1-4, (c) E-2-2, and (d) E-2-4, where a small difference in 
the diamond crystal grain size can be appreciated between both pretreatment methods 

 

Adhesion evaluations were conducted on the diamond coatings deposited on all 

the surfaces resulting from the modified pretreatments. The first characteristic observed 

in the delamination mechanism of the diamond coatings after successive indentations was 

the progression of the diamond delamination from the substrate with respect to the 

indentation load, as shown in Figure 5.8(a) and Figure 5.8(b), corresponding to EPMA 

images of an oxygen distribution at the coated surface of sample E-2-3 after indentation 

loads of 45Kg and 100 Kg, respectively. 
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Figure 5.8. EPMA image from an oxygen map at the coated surface of sample E-2-3 after 
a Rockwell indentation with a force of (a) 45Kg and (b) 100 Kg 

 

During lower indentation loads, the coating deformed with the substrate and a 

formation of circular marks developed concentrically to the Rockwell indentation 

imprint. This deformation was characterized by a contrasted area under the microscope, 

suggesting a lifting of the coating without peeling under a resolved tensile stress cause by 

a bending of the diamond coating [70,115] as shown in Figure 5.8(a), and produced by 

lateral cracks extending at the interface [116]. The small peeling area observed in Figure 

5.8(a) is due to the higher tensile strain around the indenter geometry [117].  

The concave shape of the lifted coating is an indication of the compressive nature 

of the initial biaxial residual stress present in the coating [118]. As the load increases, 

diamond will start to delaminate from the bent coatings when lateral cracks continue to 

propagate in a radial direction at the interface, now with a higher energy sufficient to peel 

the initial lifted and bent coating as shown, in Figure 5.8(b). 
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A complete reconstruction of the crack propagations and diamond coating 

delaminations after successive Rockwell indentations at 45kKg, 60Kg, 100, and 150 Kg, 

is shown in Figure 5.9(a)-(d) on a diamond coated surface corresponding to sample E-2-

3. This sample was chosen for this analysis due to the development of a progressive 

delamination mechanism visible on the SEM. The same mechanism was observed in the 

other coated surfaces but with different load progression dependence as an indication of 

different adhesion behaviors. This is expected due to the differences in the 

coating/substrate interfacial characteristics. 

Figure 5.9(a) corresponds to the image of an indentation in the diamond coating at 

45Kg. Radial cracks are present at the diamond coating surface with origins at the peeling 

ring around the indentation imprint. Small concentric cracks (arrow), also known as 

Hertzian ring cracks, start to form as the diamond coating starts to bend in a reference 

zone named 1. As the load increases to 60 Kg in Figure 5.9(b), the maximum concentric 

crack distance (MCCD) is more visible at approximately 260 µm colliding with the end 

of the radial cracks. Now the energy present in the lateral cracks peel the initial bent areas 

in zone 1 and bend a new coating area referenced as zone 2. Similarly in Figure 5.9(c) for 

a load of 100Kg, the zone 2 starts to peel (arrow) as confirmed by its MCCD value at 

approximately 258 µm. Additionally, a new bent coating is visible by the formation of a 

new maximum concentric crack located at a MCCD value of approximately 308 µm, 

defining a new area referenced as zone 3. After an indentation load of 150 Kg is applied, 

shown in Figure 5.9(d), the energy of the lateral cracks completely peeled zones 1, 2, and 

3; the radial crack continues to propagate (arrow) at the end of zone 3 at a maximum 

peeled extension distance (MPED) of approximately 305 µm. No concentric cracks were 
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found in the diamond coating. For this higher load, a substrate cohesive failure is 

observed and characterized by the apparition of lateral cracks on its surface, which is 

referenced as zone CF visible as a different contrast in the SEM image. 

 

 

Figure 5.9. SEM micrographs corresponding to indentations in the diamond coated 
surface of sample E-2-3, depicting the failure of the coating for successive loads of (a) 
45Kg, (b) 60Kg, (c) 100 Kg, and (d) 150 Kg 

 

Details corresponding to the crack propagation mechanisms are depicted in Figure 

5.10(a)-(d). The origin of the radial cracks from the outer ring around the indentation 

imprint is shown in Figure 5.10(a), including the formation of the initial concentric 
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cracks. The crack energy is sufficient to promote an initial peeling of the coating around 

the imprint, exposing the substrate and pushing the peeled coating under the one which is 

lifted. Figure 5.10(b) shows the correspondence in direction between the lateral cracks 

developed at the interface and the radial cracks present at the lifted diamond coating. This 

initial delamination is characterized by the peeling area exposed from the origin of the 

radial cracks to the formation of the concentric crack, which develops the zone 1 

discussed in Figure 5.9(a).  

 

Figure 5.10. SEM micrographs corresponding to crack propagation mechanisms depicted 
in Figure 5.9 (a)-(d) for indentation loads of (a) 45 Kg, (b) 60 Kg, and (c)-(d) 150 Kg 
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The cohesive failure of the substrate produced at an indentation load of 150 Kg is 

depicted in Figure 5.10(c). The presence of lateral cracks and the development of 

concentric cracks at the substrate exposed a new subsurface area, which is an indication 

that the force is sufficient to promote a cohesive failure of the top WC surface and the 

lateral crack runs at the interface between the original substrate and the Co depletion 

layer. These can be seen in detail in Figure 5.10(d), which depicts a lateral crack 

produced at the subsurface interface of the substrate causing its cohesive failure. 

The same crack propagation mechanism was observed for the diamond coatings 

deposited on the CrN/Cr interlayer with differences in terms of the delamination 

interfaces. In this case, loads of 45Kg and 60 Kg produced a diamond delamination from 

the top Cr layer as shown in Figures 5.11(a) and 5.11(b) by the same abovementioned 

mechanisms. However, when a load of 100 Kg is applied, the crack energy is sufficient to 

produce a cohesive failure (CF) in the CrN/Cr interlayer, exposing the WC-Co substrate 

around the indentation imprint as shown in Figure 5.11(c). This cohesive failure zone is 

more visible at an indentation load of 150 Kg, partially shown in Figure 5.11(d), where 

the exposed WC-Co, CrN, and Cr surfaces are depicted. This zone is crossed by a lateral 

cracks and segmented by concentric cracks, which expose the WC-Co, CrN, and Cr 

surfaces. 
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Figure 5.11. SEM micrographs corresponding to indentations in the diamond coated 
surface of sample I-1, depicting the failure of the coating for successive loads of (a) 
45Kg, (b) 60Kg, (c) 100 Kg, and (d) 150 Kg 

 

The delamination progression mechanisms analyzed from Figure 5.8 to Figure 

5.11 confirms the statement mentioned earlier related to the fact that a direct diamond 

adhesion comparison between chemical etched pretreatments and interlayer approaches is 

not practical by indentation evaluation techniques. The lateral crack energies necessary to 

bend and peel the diamond coating are different in the two methods, and depend on the 

nucleation interface where the initial cracks originated. However, a comparison between 

different diamond coatings deposited on surfaces obtained by a similar cobalt suppression 

approach, etching or buffer interlayer, may be feasible. 
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A diamond delamination analysis was done on the diamond coated modified 

pretreated samples after the successive Rockwell indentations with the aim to evaluate 

the effect of the substrate surface integrity and subsurface condition in the diamond 

adhesion. The maximum distance from the center of the indentation to the outermost 

coating concentric crack (MCCD) and to the extension of the peeled coating (MPED) 

was measured when present at different indentation loads. The maximum distance is used 

due to the non-circular morphology of the bent and peeled coating areas, as seen in 

previously. Table 5.2 contains the results of these measurements for samples E-1-1, E-1-

4, E-2-1, E-2-4, and I-2. These results correspond to the highest MCCD and MPED 

values, both are present at the same time in a single indentation out of a set of four 

indentations per load. 

It can be seen from Table 5.2 that the delamination progression mechanisms and 

crack lengths differ among the samples. A complete crack progression as seen in Figure 

5.9(a)-(d) for sample E-1-3 was also obtained for sample E-1-4, which is characterized by 

a value of MCCD higher than the MPED value in all the indentation loads. This 

mechanism suggests that some portions of the coating still are adherent to the substrate at 

each individual indentation load, and a complete delamination will be achieved at a 

higher load. In the case of sample E-1-4, this load is higher than 150 Kg. 
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Table 5.2. Maximum distance from the center of Rockwell indentation to the outermost 
concentric crack (MCCD) and to the final extension of the peeled area (MPED) when 
present on diamond coated samples at different indentation loads 

E-1-1 E-1-4 

Load 30Kg 45Kg 60Kg 100Kg 150Kg Load 30Kg 45Kg 60Kg 100Kg 150Kg 

MCCD 

(µm) 
NP 355.2 1126.7 1129.3 NP 

MCCD 

(µm) 
338.9 446.8 433.2 445.1 495.2 

MPED 

(µm) 
NP NP 1146.8 1157.1 1166.2 

MPED 

(µm) 
316.6 272.7 288.4 283.9 353.2 

E-2-1 E-2-4 

Load 30Kg 45Kg 60Kg 100Kg 150Kg Load 30Kg 45Kg 60Kg 100Kg 150Kg 

MCCD 

(µm) 
NP 558.2 666.7 NP NP 

MCCD 

(µm) 
428.7 489.4 471.9 441.8 NP 

MPED 

(µm) 
NP 303.4 516.4 684.4 719.8 

MPED 

(µm) 
377.7 441.0 524.1 386.5 414.7 

I-2 
 

MCCD: Maximum concentric crack distance 

MPED: Maximum peeled extension distance 

NP: No MCCD / No MPED 

Diamond coating thickness:~ 30µm 

Load 30Kg 45Kg 60Kg 100Kg 150Kg 

MCCD 

(µm) 
NP 253.1 269.0 1063.3 NP 

MPED 

(µm) 
NP 103.7 126.0 265.8 1091.5 

 

A complete delamination is achieved at loads of 150 Kg in sample E-1-1 and E-2-

4, and 100 Kg in E-1-1, which are all characterized by the absence of a MCCD value. 

The highest MPED value corresponds to sample E-1-1. The fully developed progression, 

which is characterized by the presence of both MCCD and MPED values in a single 

indentation starts at a load less than 30 Kg in sample E-1-4 and E-2-4, 60 Kg in sample 
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E-1-1, 45 Kg in sample E-2-1, and 150 Kg in sample E-3. The beginning of the 

progression in sample I-2 is 45 Kg and a complete coating peeling area at 150 Kg. 

Based on the results from Table 5.2, we defined the critical load in a delamination 

progression after successive Rockwell indentations as the minimum indentation load 

capable to produce a complete diamond coating delamination without creating an 

additional MCCD greater than the characteristic MPED present at that load. Furthermore, 

critical load value comparisons can only be conducted between coating/substrate systems 

with the same number of interfaces as a result of the nature of the crack developments 

and delamination progression discussed. In Table 5.2, the comparison can only be done 

between chemically etched samples E-1-1 and E-2-1, and samples E-1-4 and E-2-4, 

which have the same cobalt depletion layer thickness, so differences in adhesion will be 

solely attribute to variation in the superficial interface characteristics with the diamond 

coatings deposited under equal CVD deposition conditions. In interlayer cobalt 

suppression methods, a possible comparison could be achieved by independently 

modifying the interlayer thickness or material for the same number of interfaces; 

however, experimental results are necessary to validate this hypothesis. 

A close look to the coating/substrate system failure under indentation load is 

presented in Figures 5.12, 5.13, and 5.14. Figure 5.12 corresponds to a SEM image of the 

cross section after fracture produced by a Rockwell C indentation (150 Kg) of a diamond 

coating surface deposited in a thickness of approximately 25 µm, over a modified 

cemented carbide turning insert by method E-1-3. In this figure, the deformation and 

stress distribution during the indentation depict the material volume displaced during the 
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elastic-plastic contact [119] and the consequent elastoplastic indentation stress field 

[120].  

 

 

Figure 5.12. SEM micrographs corresponding to the fractured cross section of an 
indentation in the diamond coated surface of sample E-1-3, depicting the elastoplastic 
indentation strain field for a load of 150 Kg 

 

It is evident the plastic deformation of the substrate is in a radial direction from 

the center of the indentation towards the bulk, and is divided into two fracture planes 

resulting from the two load conditions, the preload or minor load (10Kg) and the test load 

or major load (150Kg), during the Rockwell indentation. The formation of lateral cracks 

through the interface between the WC-Co original substrate and the cobalt depletion band 

are also present (arrow), which is responsible for the cohesive failure of the substrate 

discussed in Figure 5.10(c)-(d). This subsurface interfacial failure is depicted in Figure 

5.13 at a zone close to the indentation imprint.  
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Figure 5.13. SEM micrographs corresponding to interfacial failure between the WC-Co 
bulk and the cobalt depletion layer during the indentation shown in Figure 5.12 

 

The interfacial crack can be observed in between these two fracture surfaces, as a 

consequence of the difference in toughness between both, the WC-CO bulk and the 

cobalt free layer; here, the cobalt depletion layer can be distinguished by a different 

fracture texture when compared to the original WC-Co structured, which is characterized 

by the radial deformation flow discussed previously. 

Figure 5.14 shows a SEM image at the end of the diamond peeled area, and 

corresponding to the cross section described in Figure 5.12. At this location, the 

interfacial failure is located between the coating and the substrate.  

The fracture of the coatings is perpendicular to the substrate, which is expected 

due to the columnar growth direction of the diamond coating; however, a cohesive failure 

in the diamond coating is observed as an additional fracture surface parallel to the 
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substrate. This region may correspond to the concentric cracks discussed earlier, which 

appear in a top view SEM image of the indentation showed in Figure 5.9(b)-(c).  

This cohesive failure may be caused by the last bent portion of the peeled coating 

and the initial developing a new lifted zone ahead of the peeled zone continue with the 

delamination progression. 

 

Figure 5.14. SEM micrographs corresponding to the transition between the end of the 
peeled diamond area and the adherent diamond coating during the indentation shown in 
Figure 5.12 
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CHAPTER 6. MACHINING PERFORMANCE OF THE DIAMOND COATED 
TOOLS 

 

 

6.1. Introduction 

The ultimate goal of this research is to evaluate the dry machining performance of the 

diamond coated tool on the surface/subsurface modified WC-Co turning insert by the 

pretreatment methods described in Chapter 4. The results presented in this chapter will 

provide a direct correlation linking the effect of the surface and subsurface integrity of 

the pretreated WC-Co inserts, the adhesion behavior evaluated in Chapter 5, and the real 

machining performance of the diamond coatings in terms of wear behavior and tool life. 

As summarized in Table 3.4, which is in regard to the experimental research 

works conducted to enhance diamond coated tools adhesion in dry machining 

applications during the last 10 years, there is no systematic work conducted to evaluate 

the effects of the tool substrate surface/subsurface characteristics on the dry machining 

performance, particularly, in high silicon aluminum alloy materials. The complex tool-

coating-workpiece interactions developed during a dry cutting operation for a particular 

manufacturing chain require a real machining experimental scenario as the necessary 

evaluation criteria. This concludes the expected machining performance of the CVD 

diamond coatings. 
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As mentioned in Chapter 1 and Chapter 2, high silicon aluminum alloys have a 

significant importance in the automobile and aerospace industries due to their high wear-

resistant properties and fluidity, combined with a high strength to weight ratio [14]. In 

this research, a A390 aluminum alloy has been used for the machining performance tests 

conducted with the diamond coated tools. The workpiece material used correspond to 

cylinders of 110 mm in diameter and 200 mm long, and produced by initially casting 

A390 alloy bars with approximately 16 wt% silicon in the final cylindrical geometry. The 

chemical composition of the alloy is summarized in Table 6.1 measured by inductively 

coupled plasma mass spectrometry (ICP-MS).  

Table 6.1. Chemical composition of the high-silicon aluminum alloys used for the 
machining performance test 

Cr: 0.05%  Cu: 3.9%  Fe: 0.52%  
Si: 16.3%  Ti: 0.06%  Zn: 1.1%  
Mg: 0.44%  Mn: 0.18%  Ni: 0.14%  

 

One of the big challenges in machining high-silicon aluminum alloys is the 

combination of a soft aluminum matrix capable to produce Al-BUE on the tool and the 

presence of high abrasive silicon particles and sludge. This sludge is characterized by the 

formation of hard intermetallic phases during the alloying process which combine with 

the precipitated silicon represent an aggressive abrasive condition which is detrimental to 

the tool life and performance.  

Figure 6.1(a)-(b) shows optical images corresponding to the microstructure of the 

A390 alloy after metallographic preparation. Figure 6.1(a) depicts a 40x magnification of 

the general microstructure of the alloy. The presence of pores and voids in the workpiece 

material can be visualized in the micrograph. Figure 6.1(b) is an 80x micrograph where 
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the typical microstructure of the alloy containing the coarse sludge intermetallic 

compounds. Figure 6.1(c) is a 160x micrograph depicting the distribution and 

morphology of the sludge in the soft aluminum matrix and the eutectic silicon. Figure 

6.1(d) shows a micrograph at 400x detailing the eutectic silicon phase with some 

embedded Al2O3 particles.  

 

Figure 6.1. (a)-(d). Optical micrograph corresponding to the microstructure of the A390 
high silicon aluminum alloy workpiece material used for the machining performance tests 
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6.2. Experimental Conditions 

Dry machining experiments were performed using a computer numerical control 

(CNC) lathe Hardinge Cobra 42 equipped with a Kistler dynamometer (9257B) to 

monitor the cutting forces during the machining at 500 scans/second, and a Kistler 8152B 

piezotron acoustic emission sensor to collect AE-RAW (raw data) and AE-RMS (root-

mean-square) values at a 500 kHz sampling rate during the machining operation.  

Figure 6.2 shows the dry machining performance test setup. Machining 

parameters were kept constant at a cutting speed of 10 m/sec, feed of 0.8 mm/rev, and a 

depth of cut of 1 mm. During the machining test, diamond coated inserts were 

periodically inspected to measure the flank wear-land by optical microscopy. The worn 

tools after testing were cleaned by 10 vol% hydrochloric acid to remove the aluminum 

alloy deposited in the cutting area and then examined by SEM and EPMA. 
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Figure 6.2. Dry machining performance setup used for the diamond coated tools 
experiments 

 

6.3. The Dry Machining Performance Test after the Initial Surface Pretreatments 

Figure 6.3 shows the flank wear-land width (VB) time evolution of diamond 

coated turning inserts pretreated under methods E-1, E-2, and I-1, and previous results of 

commercial MCD, PCD, and nano-diamond coated inserts [79]. The results indicated that 

samples I-1 showed an abrupt increase of wear-land in short period of times 

corresponding to 0.49 mm in 26 sec, which indicates that coating delamination occurred 

abruptly and resulted in rapid wear of the exposed interlayer/carbide substrate. 
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Figure 6.3. Flank wear-land (VB) time evolution of diamond coated turning inserts 
pretreated under methods E-1, E-2, and I-1 

 

Perhaps the fluctuations observed in the wear-land width value (VB) shown in 

Figure 10 as the result of the accumulation of aluminum during the interrupted cutting 

operation, a better behavior was observed for samples E-1 and E-2, which failed at a 

lower VB levels and higher cutting times of 0.3 mm in 293 sec and 0.34 in 104 sec, 

respectively; the corresponding diamond film failure was detected as a change in the 

intensity of the AE-RAW signal when compared with the initial cutting pass. Thus, it is 

concluded that diamond coated turning inserts under the developed pretreatment method 
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E-1 are more effective under the aforementioned dry machining conditions, and display a 

better performance compared to commercial tools.  

Figure 6.4 shows SEM micrographs of the worn samples after the machining test. 

Coating delamination is the main failure for all samples. A gradual degradation of the 

diamond coating was observed for sample E-1 where flank wear-land is the major 

feature. Sample E-2 displays a sharp tool wear growth in contrast to sample I-1, which 

depicts a delamination the diamond and the interlayer coating, suggesting that the CrN/Cr 

interlayer detached from the substrate at early stages of the machining, which 

consequently exposed the carbide as the only remaining surface for cutting. 

The abovementioned analysis was performed in order to get an estimate about the 

overall performance of the diamond coatings deposited under the main surface 

pretreatment approaches and compare them with the MCD, PCD, and NCD commercial 

tools. It was found that the adhesion of the coating can be significantly improved by the 

initial method E-1. However, it is still required to evaluate the failure mechanism 

associate with the surface and subsurface integrity for each method as proposed earlier. 
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Figure 6.4. SEM micrographs of the worn samples after the machining test 
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6.4. The Dry Machining Performance Test after the Modified Surface Pretreatments 

Dry machining tests were conducted on the surface pretreated turning inserts 

described in Table 4.2 with the purpose to evaluate the effect of the etching time and the 

consequent surface/subsurface modifications with respect to the machining performance 

of diamond coated tools. Particularly, the key objective of these tests was to establish the 

correlation between the wear failure modes of the diamond coated tools and the 

surface/subsurface conditions, characterized in Chapter 4, in conjunction with the 

adhesion failures described in Chapter 5.  

The machining tests were performed in samples E-1-1, E-1-3, and E-1-4 with the 

aim to evaluate the effect of the cobalt depletion layer in the mechanical and wear 

response of the diamond coated inserts during dry machining operations. A dry 

machining test was also performed in sample E-2-1 with the aim to correlate the effect of 

the surface and the resulting adhesion during dry machining when compared with sample 

E-1-1. These two samples have the same amount of subsurface damage in terms of the 

cobalt depletion thickness, as found in Chapter 4. Additionally, another test on sample I-1 

was conducted to compare the wear behavior among all pretreatments under the same 

machining conditions.  

Due to limitations in the amount of workpiece materials, and considering the 

possible outstanding performance of some diamond coated tools, a tool life criterion was 

established as the amount of wear when cutting until 2.5 minutes of interrupted cutting. 

The interrupted cutting condition was performed as a consequence of removing the tool 

at certain specific times during the cutting operation in order to measure the flank wear. 
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Figure 6.5 summarize the tool wear progression of the different diamond coated 

tools until the 2.5 minutes of interrupted cutting by measuring the amount of flank wear 

on the tool at some points during cutting.  

 

 

Figure 6.5. Flank wear-land (VB) time evolution of diamond coated turning inserts 
pretreated under methods E-1-1, E-1-3, E-1-4, and E-2-1 

 

Sample I-1 corresponding to the CrN/Cr interlayer pretreatment method failed due 

to sudden delamination during the first pass displaying a VB wear value of 1.21mm 

occurred after 0.057 minutes of cutting. The lowest VB wearland corresponds to sample 

E-1-4 and the highest to sample E-1-1. However, due to the aluminum BUE observed 

during the dry machining, which is depicted as the fluctuations in the values of the wear 

land, samples were ultrasonically cleaned in an acetone solution to detach some of the 
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aluminum present at the surface and obtaining a better wear land measurement at the end 

of the tests.  

The final measurements of the VB wear land after the ultrasound cleaning cycle 

were 0.303 mm for the commercial MCD sample, 0.11 mm for sample E-1-1, 0.19 mm 

for sample E-1-3, 0.53 mm for sample E-1-4, and 0.83 mm for sample E-2-1. These 

results are included on the top of the images of the resulting flank surface for all tested 

tools shown in Figure 6.6. The values were measured at the cutting tip from the top 

surface of the tool to the final extension of the wear land. Measurements on the flank 

were difficult to perform due to the smeared aluminum on its surface. 

The results from Figure 6.6 show the premature failure of sample I-1 due to a 

complete delamination of the diamond coating at the beginning of machining and the 

consequent exposure of the substrate. A microchipping failure was observed in sample E-

1-1 and a gradual coating wear on samples E-1-3 and E-1-4. The extensive amount of 

wear measured in sample E-2-1 was associated with a flaking from the tool substrate after 

the final ultrasonic cleaning. A gradual wear failure mode was also observed on the 

commercial MCD sample. It is interesting to see how after the final ultrasound cleaning 

cycle, the wear land decreased for samples E-1-1, E-1-3, and MCD inserts, which 

suggests that the performance of sample E-1-4 is better than the rest in terms of the 

aluminum BUE deposited on the cutting tip. 

In order to characterize the delamination mechanisms of the diamond coatings 

from the pretreated substrates, an additional ultrasonic cleaning cycle with a 10% HNO3 

solution was performed on all tools. A detailed analysis of the worn tool cutting edges 
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after dry machining tests is shown in Figure 6.7 for samples E-1, E-2, and I-1; the results 

from digital microscopy images, EPMA backscattering electron (BSE) analysis, and 

chemical compositional maps are shown in columns from left to right, respectively. 

 

Figure 6.6. Wear morphology at the cutting tip of the pretreated diamond coated tools 
after 2.5 minutes of dry cutting 
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Figure 6.7. Digital microscopy images (left column), backscattering SEM micrographs 
and EPMA chemical composition mappings (center and right columns, respectively) 
corresponding to the worn cutting edges of samples E-1-4, E-2-1, and I-1 

 

Results in Figure 6.7 evidenced that the sample E-1-4 displays a gradual wear-

land formation, no diamond debonding, and some aluminum covering the wear land, 

typical characteristics of an adherent diamond coating. The results from the sample E-2-1 

delamination patterns represent a tool failure characterized by an abrasion wear 

mechanism at the top of the cutting edge followed by a diamond peeling at the bottom of 

the flaking area. This wear pattern is associated with an early coating debonding at the 

top of the tool edge which promotes the subsequent abrasion of the WC substrate during 
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the cutting operation, which is also confirmed by the W compositional maps. In sample I-

1, the failure sequence is similar to the sample E-2-1; however, the initial diamond 

debonding begins at its interface with the top Cr interlayer promoting an abrasion of the 

latter  followed by the CrN layer abrasion, and finally exposing the WC-Co substrate as 

confirmed by the BSE image and the W chemical map.  

The failure of sample E-2-1 under dry machining conditions might be attributed to 

the undesirable directional surface features characterized in the texture maps shown in 

Chapter 4, which are perpendicular to the cutting direction at the tool edge. These 

directional features provide preferential paths for crack propagations which finally 

promote the diamond coating debonding as characterized from the indentions 

measurements and delamination evaluations discussed in Chapter 5. 

The interlayer failure evidenced in sample I-1may be mainly originated from a 

weak chemical binding energy between the diamond coating and the top Cr surface 

where the blasted diamond particles are not sufficient enough to provide a strong 

bonding. Due to the wide difference in machining performance between the CrN/Cr 

interlayer and the chemical etching pretreated tools, any additional optimization in the 

distribution or amount of diamond blasted/impinged particles at the top of the interlayer 

could not be sufficient to get closer to the performance of chemical etched samples. This 

may constitute a reason of why there are still no commercial solutions in the market of 

diamond coated tools intended for high silicon aluminum dry machining applications 

which incorporate the use of CrN/Cr interlayers as an adhesion improvement method.  
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The CrN/Cr lack of adhesion can also be attributed to its minimal carbide 

formation ability due to its interdiffusion with carbon and the formation of additional Cr 

multiphase compounds (Cr3C2, Cr7C3, and Cr3C6), which provide a preferential direction 

for crack propagation [121] and evidenced in the XRD patterns shown in Figure 5.2. 

In order to characterize the progressive wear failure or the abrupt delamination 

observed in the diamond coated tools in terms of the cutting efficiency, the information 

from the force dynamometers was recorded during each cutting pass for all samples 

described in Figure 6.5. An example of the three cutting forces developed during one 

cutting length pass is shown in Figure 6.8. Due to the characteristics of the dry machining 

process and the workpiece material condition, there is a variation in the force signal 

during the cutting time. In order to estimate a value for these forces, an average value was 

taken for each of them in a time range between the beginning and the end of the cutting 

pass. These values are summarized in Table 6.2 and correspond to the first, intermediate 

(~ 1.2 min), and final pass during the machining performance test. Besides the three 

major force components, a ratio between the average axial force Fa (feed force) and the 

tangential force Ft (cutting force) was also included in Table 6.2. Differences in the 

values of the radial force component during the first pass among all samples are mainly 

caused by the differences in workpiece geometry in terms of its diameter and the 

resulting vibration modes. 
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Figure 6.8. Example of the three cutting forces developed during one cutting length pass 
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Table 6.2. Average values for the force components at three different cutting passes 
during the machine performance test 

Sample 
First Pass Intermidiate Pass 

(~ 1.2 min) Final Pass 

Fr 
(N) 

Ft 
(N) 

Fa 
(N) Fa/Ft Fr 

(N) 
Ft 
(N) 

Fa 
(N) Fa/Ft Fr 

(N) 
Ft 
(N) 

Fa 
(N) Fa/Ft 

MCD 92.9 403.8 49.9 0.12 36.5 383.4 63.6 0.17 10.7 332.7 68.7 0.21 
E-1-1 12.9 395.3 51.1 0.13 88.3 392.6 63.4 0.16 115.2 402.9 74.9 0.19 
E-1-3 74.3 432.7 58.3 0.13 34.9 389.6 69.5 0.18 121.8 414.1 84.2 0.20 
E-1-4 11.1 372.8 41.9 0.11 88.5 390.4 56.7 0.15 39.1 395.4 74.3 0.19 
E-2-1 57.1 391.2 39.9 0.10 8.4 390.1 59.3 0.15 194.7 437.1 179.5 0.41 

 

According to Table 6.2, the values of the forces Ft and Fa depend of the aluminum 

BUE amount at the tool cutting tip, however, the ratio Fa/Ft can be correlated to estimate 

the failure of the tool coating due to its gradual increase along with the cutting time. A 

failure in the coating can be also characterize by this ratio and found to be 0.41 for 

sample E-2-1. 
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CHAPTER 7. CONCLUSIONS 

 

The analysis and evaluation of diamond coatings deposited on cutting tool 

materials requires a systematic approach tailored in accordance with the particular 

manufacturing chain under consideration. Multiple research studies have been proposed 

in order to analyze the diamond adhesion and machining behavior, however, very few 

have been conducted by considering the correlation between the fundamental aspects of 

the diamond adhesion, the existent surface characteristics of the cutting tool, and the 

practical aspects encountered during dry machining operations. Moreover, any research 

study developed by using the cutting tool as a substrate, must consider its initial surface 

conditions and geometry aspects in order to optimize the diamond deposition process if 

machining performance is considered as the final output.  

The main aspect to influence the diamond adhesion on surface pretreated WC-Co 

cutting tools is the surface/subsurface integrity of the substrate resulting from the cobalt 

suppression/halting approach applied. When chemical etching methods are used, the 

resulting roughness and surface texture in terms of preferential features play a key role in 

the diamond adhesion and machining performance as concluded by the results of the 

initial pretreatment evaluations. The selection of the processing variables during etching 

methods in terms of the chemical nature and immersion time must be related to the initial 
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conditions encountered in the tool surface in order to achieve an optimal substrate 

condition.  

During this research, the effect of the initial etching step using the Murakami 

reagent was analyzed in terms of the resulting texture and roughness parameter values. 

This etching stage is capable of producing a smoother surface at the substrate by 

minimizing the prior feed marks and surface damage. These features were successfully 

removed on the order of micro-scale roughness texture; however, other surface features 

were not removed completely after the highest immersion etching time (M4 treatment) as 

seen in Figure 4.7(d). Moreover, if longer Murakami etching times are used in an attempt 

to remove these remaining features, other surface defects will be created as seen in Figure 

4.8. These resulting voids and craters significantly decrease the diamond adhesion and 

may have an impact in the tool geometry required for particular cutting operations. It is 

therefore important to specify an initial surface condition to the tool manufacturer when 

inserts are intended to be coated.  

The amount of cobalt removed from the tool represented as the thickness of the 

cobalt depletion band depends on the immersion etching time as expected. The 

differences in this depletion band thickness are shown to have an effect on the formation 

of lateral cracks in the substrate. These cracks occurred during indentation evaluations 

performed to measure the initial adhesion of the diamond coatings. However, these 

values of the cobalt depletion thickness produced also prevented cobalt re-diffusion to the 

surface and did not appear to influence the final machining behavior of the diamond 

coated inserts during the dry machining operation. 
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The fundamental chemical adhesion between the diamond coating and the CrN/Cr 

interlayer is the most important factor to consider if further optimization is to be attained 

through the use of this interlayer. The failure of the diamond coatings deposited when 

using this interlayer pretreatment approach is mostly associated with a delamination at 

the interface between the diamond and the top Cr layer as discussed in Chapters 5 and 

Chapter 6. Improvements by optimizing the shoot peening process may not have a 

significant impact on the adhesion due to its pure mechanical interlocking nature. An 

increase in the chemical bonding between the diamond and the interlayer is the key 

aspect to improve when considering new interlayer architectures. A better carbide 

formation without the formation of additional multiphase compounds is required to 

achieve an optimal adhesion behavior of the diamond coating. 

The definition of adhesion refers to a system where the work or force of 

detachment is measured by the application of an external load capable of causing failure 

to the system under investigation. Based on this concept, different methodologies, which 

are essentially destructive, have been developed to characterize the adhesion, including 

Rockwell C indentation, scratch, bulge, and blister test. These methods are very useful 

for routine quality control. However, based on the experimental results of this research, it 

is not appropriate to correlate the adhesion measured by the Rockwell C indentation 

evaluation with the dry machining performance by using single indentations and 

comparing substrates with different interfacial characteristics. A more consistent 

adhesion evaluation for commercial microcrystalline diamond coating thicknesses (25-30 

µm) was obtained by the critical load determination when using indentation progressions. 

The comparison of adhesion improvements in terms of critical loads is not valid when 
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different interfaces (surface/subsurface) are present. Furthermore, the experimental 

results of this research work indicate that the evaluation of the adhesion of diamond 

coated cutting tools by pin-on-disc tribological tests, impact tests, scratch, indentation, or 

sand abrasion testing methods. 

The machining performance of the interface engineered diamond coatings directly 

depends on the interfacial characteristics developed during the initial surface pretreatment 

methods. The failure of the CrN/Cr interlayer during the dry machining operation, 

suggest that the forces and stresses developed are considerably higher than the 

fundamental adhesion of the diamond coating. In terms of machining performance, the 

initial surface texture of the cutting tool determines the failure mode during cutting. In 

this manufacturing chain there is no evidence to believe that the subsurface integrity 

(cobalt depletion layer) has an influence in the machining performance.  

When a particular surface condition is present on commercial carbide tools, any 

of the chemical etching methods can be used after a comprehensive optimization study of 

their effects. Through this extensive experimental work, there was no evidence of cobalt 

re-diffusion during the CVD growth that can potentially affect the resulting diamond 

adhesion. The CrN/Cr interlayer was not viable for dry machining applications and any 

optimization at the surface by peening methods will not increase the fundamental 

adhesion of the coating for machining applications. 

An experimental protocol has been established to determine the critical load for 

commercial diamond coatings in an indentation progression and can be correlated to the 

expected dry machining performance. The coated tool insert produced by the chemical 
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pretreatment E-1 performed significantly better in the dry machining of high silicon 

aluminum alloys and extensive experimentation was used to demonstrate the coating 

adhesion behavior and wear mechanisms involved.  
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